Publications

In preparation

  • Empty

Under review

  • Empty

Journal Papers

  • Hau T. Mai , Dai D. Mai, Joowon Kang, Jaewook Lee, Jaehong Lee (2023). Physics-informed neural energy-force network: a unified solver-free numerical simulation for structural optimization. Engineering with Computers, 1435-5663. https://doi.org/10.1007/s00366-022-01760-0 (PDF)
  • Hau T. Mai , Tam T. Truong, Joowon Kang, Dai D. Mai, Jaehong Lee (2023). A robust physics-informed neural network approach for predicting structural instability. Finite Elements in Analysis and Design, 216, 103893. https://doi.org/10.1016/j.finel.2022.103893 (PDF)
  • Hau T. Mai , Jaewook Lee, Joowon Kang, H. Nguyen-Xuan, Jaehong Lee (2022). An Improved Blind Kriging Surrogate Model for Design Optimization Problems. Mathematics, 10, 2906. https://doi.org/10.3390/math10162906 (PDF)
  • Hau T. Mai , Qui X. Lieu, Joowon Kang, Jaehong Lee (2022). A novel deep unsupervised learning-based framework for optimization of truss structures. Engineering with Computers, 1435-5663. https://doi.org/10.1007/s00366-022-01636-3 (PDF)
  • Hau T. Mai , Seunghye Lee, Donghyun Kim, Jaewook Lee, Joowon Kang, Jaehong Lee (2023). Optimum design of nonlinear structures via deep neural network-based parameterization framework. European Journal of Mechanics - A/Solids, 98, 104869. https://doi.org/10.1016/j.euromechsol.2022.104869 (PDF)
  • Hau T. Mai , Qui X. Lieu, Joowon Kang, Jaehong Lee (2022). A robust unsupervised neural network framework for geometrically nonlinear analysis of inelastic truss structures. Applied Mathematical Modelling, 107, 332-352. https://doi.org/10.1016/j.apm.2022.02.036 (PDF)
  • Hau T. Mai , Joowon Kang, Jaehong Lee (2021). A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior. Finite Element Analysis and Design, 196, 100646. https://doi.org/10.1016/j.finel.2021.103572 (PDF)

    Conference Proceedings (peer-reviewed)

    • Hau T. Mai , Nguyen Hoai Son (2010). Non-Linear Finite Element analysis for Truss, Frame Structures Using Co-Rotational Approach with Simple, Linear and Efficient Constraint Equation. Vietnam Journal of Mechanics,33, 75-86.
    • Hau T. Mai , Sangeun Park, Taeseop Kim, Tuan Anh Nguyen, Jaehong Lee (2019). Deep Learning Used in Optimization Problems. The 10th International Conference on Computational Methods, Singapore. (PDF)
    • Hau T. Mai , Jaehong Lee (2021). Efficient data-collection strategy and hyperparameter tuning for machine learning using Bayesian optimization. 12th International Conference on Computational Methods(Ho Chi Minh City University of Technology), Viet Nam. (PDF)

    Other

    • Hau T. Mai (2022). Physics-informed neural networks for the analysis and optimization of structures.(PhD. Thesis)
      Sejong University (SJU)
      PhD. Architectural Engineering
      Supervised by: Prof. Jaehong Lee
    • Hau T. Mai (2011). Non-linear finite element analysis for truss, frame structures using co-rotational approach with simple, linear, and efficient constraint equation. MSc. Thesis
      University Of Technical Education Ho Chi Minh City (UTE)
      MSc. Civil Engineering
      Supervised by: Prof. Nguyen Hoai Son and Dr. Mai Duc Dai