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Abstract

In this study, a Physics-Informed Neural Network (PINN) framework is extended and ap-

plied to predict the geometrically nonlinear responses of pretensioned cable net structures with-

out utilizing any incremental-iterative algorithms as well as Finite Element Analyses (FEAs).

Instead of solving nonlinear equations as in existing numerical models, the core idea behind this

approach is to employ a Neural Network (NN) that minimizes a loss function. This loss func-

tion is designed to guide the learning process of the network based on Total Potential Energy

(TPE), pretension forces, and Boundary Conditions (BCs). The NN itself models the displace-

ments given the corresponding coordinates of joints as input data, with trainable parameters

including weights and biases that are regarded as design variables. Within this computational

framework, these parameters are automatically adjusted through the training process to get the

minimum loss function. Once the learning is complete, the nonlinear responses of cable net

structures can be easily and quickly obtained. A series of numerical examples is investigated

to demonstrate the effectiveness and applicability of the PINN for the geometrically nonlin-

ear analysis of cable net structures. The obtained results indicate that the PINN framework is

remarkably simple to use, robust, and yields higher accuracy.

Keywords: Physics-informed neural network, Nonlinear analysis, Cable net structures, Deep

neural network, Geometric nonlinearity, Static analysis

∗Corresponding author. E-mail: maitienhau@iuh.edu.vn, maitienhaunx@gmail.com
1E-mail: daimd@hcmute.edu.vn
2E-mail: diepbaotri@iuh.edu.vn
3E-mail: lamthanhdanh@iuh.edu.vn

Preprint submitted to Journal Advances in Engineering Software April 11, 2024



1. Introduction

Owing to the significant structural advantages of cable elements, they have been widely

utilized as crucial components in tension structures, particularly for designs requiring high

strength, lightweight, high degree of flexibility, and cost-effective designs. Examples of such

applications included bridges supported by cables, power supply lines, and large-span roof

structures [1, 2]. However, cable structures face potential threats due to the high geometric

nonlinearity that can lead to instability. Therefore, the effects of large deflection must be metic-

ulously taken into account when analyzing these structures. And this poses a key challenge that

has garnered the interest of numerous researchers.

Overall, various algorithms have been developed for the analysis of cable structures, broadly

categorized into two main groups: the stiffness-based method and the direct energy minimiza-

tion method [3]. In the first one, the stiffness matrix was iteratively updated as the structure

underwent deformation due to the change of geometry and material properties. To obtain the

stiffness matrix, two different approaches were employed for modeling cable elements: one

based on interpolation functions, and the other based on the analytical expression of catenary

elements. In the first sub-method, the finite element procedure employed interpolation polyno-

mial functions to approximate the nonlinear behaviors of cables. And many scholars have suc-

cessfully formulated two-node [4–6] and multi-node elements [7–10] based on this approach.

Therein, the two-node element, being the simplest and most common, is suitable for cables

with small sag and high pretension [2]. For cables with larger sag, higher-order interpolation

functions are employed to model the multi-node element for improving the accuracy [1]. In the

second sub-method, a two-node elastic catenary cable element is derived using exact analyti-

cal expressions to describe the realistic behavior of cables [11–14]. Compared to approximate

finite element models, this method provided more accurate results and required fewer num-

ber of degrees of freedom in cable structures. Although the stiffness-based algorithms have

achieved certain success, they still have limitations related to nonlinear incremental-iterative

procedures [15]. To circumvent these drawbacks, the direct energy approach combined with

optimization algorithms has been developed to estimate the nonlinear responses without us-

ing any incremental-iterative procedures. Several nonlinear optimization algorithms, including
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both gradient-based [16–20] and gradient-free methods [21, 22], have been successfully ap-

plied in the analysis of cable structures. While the gradient-free approaches have the capability

to find near-optimal solutions, they often require a greater number of function evaluations and

exhibit slower convergence speeds. On the other hand, the gradient-based methods converge

rapidly in a few iterations but necessitate derivative information of the objective function with

respect to deflections. And this is challenging to compute or may be unavailable in practical ap-

plications. As a highly effective alternative to address this challenge, the use of neural networks

equipped with the capability to approximate arbitrary nonlinear functions, along with their au-

tomatic differentiation, has emerged. NN-based approaches offer the advantage of capturing

complex nonlinear behavior without relying on explicit derivatives, making them well-suited

for analyzing cable structures.

Unlike previous techniques, machine learning has demonstrated its power and promise as

a research tool with applications across multiple fields, including language processing, voice

recognition, medical diagnoses, and industrial automation, among others. Within the field of

computational mechanics, NN has garnered significant interest [23–31]. Particularly, PINN

has gained popularity as a robust tool for solving structural analysis problems by incorporating

well-posed physical equations into the network’s loss function. And the loss function plays a

critical role in the success of the PINN framework. Therein, the TPE is one of the popular

choices for modeling the loss function of the PINN. There are two common variants of the

PINN model in an effort to minimize the TPE of the system: Deep Energy Method (DEM) and

Deep Ritz Method (DRM). They have also been successfully applied to solve the mechanics

problems. For instance, Nguyen-Thanh et al. [23, 32] first introduced the DEM for determining

the linear and nonlinear structural responses. And then several improved versions of the DEM

were developed by Huang [33], Chadha [34], and Abueidda [35]. Meanwhile, Weinan and Bing

[36] first proposed the DRM which used the NN to approximate the trial solution that satisfied

the boundary conditions and governing equations. Besides, an adaptive Ritz method was de-

veloped by Liu et al. [37] to solve the linear elasticity problem. Clearly, the PINN offered the

potential to address several challenges faced by classical methods combined with optimization

algorithms. Firstly, it provides a simulation-based approach as a mesh-free method that elim-
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inates the necessity for discretizing the domain into a finite number of elements [35]. Hence,

the PINN allows us to mitigate issues associated with the curse of dimensionality and saves

much effort in generating meshes compared to conventional solvers [38]. Besides, it has the

capability to capture the complex nonlinear responses of structures in any physical process

[39]. Additionally, another interesting point is that all differentiable and derivative information

can be easily obtained through automatic differentiation in the network’s backward propaga-

tion. Therefore, this model is capable of effectively handling problems arising from the lack of

gradient information [28]. In particular, PINN is capable of effectively addressing challenges

posed by ill-conditioned problems [40]. Owing to the above salient advantages of the PINN

model, it has proven successful in handling complex problems without discrete domain designs

[35, 39, 41–43]. Until now, to the best of our knowledge, it has not yet been applied to the

nonlinear analysis of cable net structures.

Motivated by previous successes, this study aims to extend and apply the PINN framework

for geometrically nonlinear analysis of pretensioned cable net structures. Instead of relying on

conventional incremental-iterative techniques, the NN is designed to directly estimate the cable

responses by minimizing the TPE. Therein, the geometry information consists of the spatial

coordinates of the joints which are regarded as the input data of the network. It is important to

note that this input data constitutes the entire training dataset without labels. Therein, the un-

known displacements, which serve as the network’s output values, are represented by weights,

biases, and the input data. Using the predicted displacement field, pretension forces, and BCs,

the TPE is constructed as a derivative-free loss function to guide the training process. And the

structural behaviors corresponding to the minimum loss function are obtained as soon as the

learning process concludes, without utilizing any algorithms. The efficiency and simplicity of

the proposed model are demonstrated through a series of examples to analyze the geometric

nonlinearity of cable net structures.

The remaining article is organized as follows. Section 2 presents a robust PINN framework

for the nonlinear analysis of cable net structures. Afterward, several numerical examples are

investigated to demonstrate the simplicity, accuracy, and effectiveness of our approach in Sec-

tion 3. Next, the efficiency of the proposed approach is discussed in Section 4. Ultimately,
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Section 5 draws conclusions and offers conclusions and offers prospects for further study.

2. Physics-informed neural network framework

In this section, a physics-informed NN framework is proposed to perform the geometrically

nonlinear analysis of pretensioned cable net structures. The overall flow diagram is illustrated

in Fig. 1, providing an overview of the proposed development approach. Unlike most existing

works, the NN is designed to minimize the TPE of the structure as a loss function, instead

of solving the system of nonlinear equations using conventional algorithms. This approach

eliminates the need for structural analysis and incremental-iterative algorithms. Consequently,

the structural analysis is transformed into an optimization problem, where the weights and

biases of the NN, known as the connection parameters θθθ, act as the design variables. And

the underlying physics is integrated apart from the NN architecture to guide the model during

training, ensuring that the obtained outputs obey physics laws. Initially, a fully connected

NN is established to carry out the training task. It is worth mentioning that the training data

only contains the coordinates of all joints in the cable net, whilst the corresponding unknown

displacements serve as the outputs. By using these predicted outputs, along with BCs, loads,

and physical laws, the TPE, which comprises strain energy and external work, is formulated

as the loss function. The training process utilizes feedforward (FF) and backpropagation (BP)

algorithms, along with an optimizer, to adjust the connection parameters of the network. As

soon as the training is complete, the displacements and other behaviors can be determined

almost instantly, without requiring any additional algorithms as well as structural analyses.

Further details of this procedure are provided in the following subsections to ensure a clear

understanding of our approach.

5



 
 
 
 
 
 
 
 

Figure 1. Flowchart of the physics-informed NN framework for geometrically nonlinear analysis of cable net structures. The 

magenta line displays the training process. 
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Fig. 1. Flowchart of the physics-informed NN framework for geometrically nonlinear analysis of cable net structures. The magenta line displays
the training process.
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2.1. Training data

Clearly, from the aforementioned flowchart, it can be observed that the total training data is

only a set of coordinates X = [x, y, z], BCs, external forces f, and pretension forces t0 applied

to all cable members. More concretely, the NN takes the spatial coordinates as inputs, while the

displacements d̂′ as outputs, and other structural behaviors, such as strain, stress, and member

forces, are not contained in the training data and unknown quantities. In other words, these out-

puts of the NN need to be estimated in order to minimize the TPE. Meanwhile, the other data,

including the BCs, external forces, and initial tension forces, are used to support building the

loss function. Obviously, it can be seen that the entire training data can be easily obtained from

the geometric information and problem statement without requiring any sampling techniques

or numerical methods. And this is the pivotal distinction between our model and data-driven

approaches. Furthermore, its size can be easily determined as (3, n), where n is the number of

joints, and 3 represents the corresponding x, y, and z coordinates of the joints.
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Fig. 2. A fully-connected neural network architecture.

2.2. Physics-informed loss function

A fully-connected NN depicted in Fig. 2 is constructed to estimate the structural responses.

It consists of an input layer, two hidden layers, and an output layer. Wherein the first layer,

also known as the (0th) layer, comprises three neurons corresponding to the coordinates (x, y,

z) of the joints. The end layer, denoted as the (Lth) layer, consists of three neurons representing
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the predicted displacements (û, v̂, ŵ). And the remaining layers between the input and output

layers are referred to as hidden layers (lth). In the meantime, the complexity of the problem

will affect the number of hidden neurons and hidden layers. Each neuron in the current layer

is connected to all neurons in the previous layer through the connection parameters, and their

initial θθθ values are uniformly distributed in the range of [-1, 1].

In general, the mapping of the training data from the input to the output layers, which

is known as the FF algorithm, can be expressed as d̂′: R3 → R3/X ⇒ d̂′(X, θθθ). And the

relationships between the output and input of each layer are represented as follow:

in the 0th layer : h0 = [x, y, z]T ∈ R3,

in the lth layers: hl = f1
(
Wlh(l−1) + bl

)
∈ Rml , for 1 ≤ l < L,

in the last layer : hL = f2
(
WLh(L−1) + bL

)
= [û′, v̂′, ŵ′] = d̂′ ∈ R3,

(1)

where hl and hL are the outputs of the hidden and output layers, respectively; W(.) and b(.)

denote the weight matrix and bias vector; ml refers to the number of neurons in the lth hidden

layer; f1 and f2 are the activation functions of the hidden and output layers. They play a central

role in capturing the nonlinearity of the input-output relationship. There are several popular

options, such as Sigmoid, Linear, ReLU, Softmax, LeakyReLU, and so on. In this study, the

hyperbolic tangent is employed as the activation function of neurons in the hidden layers, while

the output layer does not utilize the activation function. It should also be pointed out that the

weights and biases of the network are the parameters that need to be trained. The total number

of biases is denoted as
L∑
i=1

pi, and there are
L∑
i=1

pi−1pi weights (p0 = pL = 3), where pi represents

the number of neurons in the ith layer.

It is obvious that the predicted displacements d̂′ do not satisfy the BCs of the problem. In

recent literature, these BCs are included as a part of the loss function, resulting in increased

complexity of the objective function and inefficiency in the training process [24, 44, 45]. To

overcome this challenge, several techniques for imposing BCs have been suggested to directly

constrain the network outputs and ensure compliance with essential BCs [46]. In this study, the

output values are imposed with the BCs before constructing the loss function. Accordingly, the

displacement vector with the fulfilled BCs d̂ is expressed as follows:
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d̂ = d̂′ ⊙ b̄, (2)

with

b̄ =

 1 at the free dofs,

0 otherwise,
(3)

where b̄ denotes the coefficient vector corresponding to the constraints at the joints, and dofs

is the degree of freedom of the cable structure.

Obviously, we strictly define the TPE with the predicted displacements d̂ that satisfy all

BCs. Let us consider a pretensioned cable net system consisting of m cable members and n

joints. And the TPE of the structure Πp can be expressed as follows [16]:

Πp = U + V, (4)

in which

U =
m∑
k=1

[
U0,k + t0,kek +

EkAk

2ℓt0,k
e2k

]
, (5)

V = −fT d̂, (6)

U0,k =
EkAk

2ℓ0,k
e2t0,k. (7)

where U and V are the strain energy and external work; U0,k refers to the initial strain energy

stored in the kth element as a result of pretension; t0,k is the initial pretension force in the kth

member; Ek, Ak, ℓt0,k, ℓ0,k, and ek are the Young’s modulus, cross-sectional area, length caused

by the pretension force, elongations caused by the pretension force and external force of the

kth element, respectively; f denotes the external force vector; and d̂ refers to the predicted

displacement vector with the fulfilled BCs.

In order to achieve the elongations of the kth element, a cable segment in space that is

subjected to a pretension force with end coordinates (xi, yi, zi) and (xj, yj, zj) is considered.

As a result, its length before the application of the initial tensile force is denoted as ℓ0,k, and
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after the application of the initial tensile force is denoted as ℓt0,k. They are defined as follows:

ℓt0,k =
√

ℓ20x,k + ℓ20y,k + ℓ20z,k, (8)

ℓ0,k =
ℓ
t0,k

EkAk

t0,k + EkAk

, (9)

in which ℓ0x,k = xj −xi; ℓ0y,k = yj − yi; ℓ0z,k = zj − zi; Ek, Ak, and t0,k denote the Young’s

modulus, cross-sectional area, and the initial pretension force in the kth member, respectively.

When the cable system is subjected to the external forces, the length of the kth element ℓf,k

corresponding to the predicted displacements (ûi, v̂i, ŵi, ûj, v̂j, ŵj) can be given by:

ℓf,k =
√

ℓ2fx,k + ℓ2fy,k + ℓ2fz,k, (10)

where ℓfx,k = ℓ0x,k+ûj−ûi; ℓfy,k = ℓ0y,k+v̂j−v̂i; ℓfz,k = ℓ0z,k+ŵj−ŵi; ûi, v̂i, ŵi, ûj, v̂j, ŵj

are the predicted displacements in the x, y,and z directions at joints i and j.

It can be seen that the elongations before et0,k and after ek the application of the external

force are easily obtained from ℓ0,k, ℓt0,k and ℓf,k, as follows:

et0,k = ℓ
t0,k

− ℓ0,k, (11)

ek = ℓf,k − ℓt0,k. (12)

Once the elongations are determined, the TPE is quite obtained by combining the strain

energy and external work, utilizing the predicted displacement field and loads. It serves as a loss

function that is minimized during the training process. And its formulation can be expressed as

follows:

L (θθθ) = U (θθθ) + V (θθθ) . (13)

Note that unlike the classical PINN, our loss function is established only based on the

predicted displacement field without including partial differential values obtained in the back-

propagation process [15, 28, 47]. Precisely because of this feature, it helps save the com-
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putational time required to estimate the loss function value. Furthermore, the convergence

rate is improved due to the derivative-free loss function. Instead of using the combination of

incremental-iterative methods and FEA to resolve the nonlinear problem as in the conventional

approaches, our model minimizes the loss function by training the network to determine the

optimal parameters θθθ∗

θθθ∗ = argmin
θθθ

L (θθθ) . (14)

To achieve this objective, Adam optimizer, also known as an extension of the gradient

descent optimization algorithm, is employed for training. It is worth mentioning that the BP

algorithm, integrated into the general NN, enables easy and automatic differentiation of the

loss function with respect to the connection parameters ∇L (θθθ). For more detailed information,

interested readers are recommended to consult Ref. [48]. Note that for this study, the batch size

is set equal to the training sample size and when each iteration will represent an epoch because

the entire training data is processed in a single iteration. Consequently, at epoch (iteration)

(t+1), the network parameters are adjusted according to the minimum lost function

θθθt+1 = θθθt − η
mt+1

√
1− β2

(1− β1)
(√

vt+1 + ε
√
1− β2

) , (15)

in which mt+1 and vt+1 are given by

mt+1 = β1mt + (1− β1) · ∇L (θθθt) ,

vt+1 = β2vt + (1− β2) · ∇L2 (θθθt) ,
(16)

where θθθt represents the unknown parameter vector including the weights and biases at the tth

iteration; β1,2 denote the decay rate which are used to control the first m and second v raw

moment vectors; η and ε are the learning rate and constant to make sure numerical stability,

respectively. In this study, the model was trained using the default values as suggested by

Kingma and Ba [48]. The above whole process corresponding to stages 5-12 in Algorithm 1,

was repeated until a satisfactory agreement was achieved. This phase is commonly referred

to as the training phase. And all of the cable responses are indicated immediately upon the
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completion of the training without using any structural analyses. In this study, an early stop-

ping criterion, which is based on the disparity of gradients, is proposed to avoid unnecessary

iterations efficiently [49, 50]. Accordingly, the training task concludes when the norm of the

residual gradient of two consecutive epochs ∥∇L (θθθt)−∇L (θθθt−1)∥ must not be greater than

10−3 in the last 15 epochs (nmax = 15). A pseudo-code of our scheme, as shown in Algorithm

1, describes the main steps of the proposed framework.

Algorithm 1: Learning process of the network for nonlinear analysis of cable net
Input:

- Cable net: properties of the structure, pretension forces, applied loads
- NN: number of hidden neurons, layers, activation function, Adam optimizer

Output: optimal parameters θθθ, structural responses
1 Collect the spatial coordinates of joints
2 Construct a NN with initial parameters θθθ0 distributed in the range [-1, 1]
3 Set the parameters of Adam optimizer as the default settings [48]
4 while nf < nmax or epochmax is not reached do
5 Predict (d̂′ (X, θθθt)) using the FF
6 Applied BCs on d̂′ to obtain d̂ by Eq. (2)
7 Compute the elongation e of cable member by Eq. (12)
8 Calculate the strain energy U and external work V by Eqs. (5)-(6)
9 Loss function L (θθθt) is estimated by Eq. (13)

10 ∇L (θθθt) is calculated automatically by the BP algorithm
11 Update parameters θθθt+1 of the network by Eq. (15)
12 If ∥∇L (θθθt)−∇L (θθθt−1)∥ < 10−3 then nf = nf + 1
13 t=t+1

2.3. Detailed example

In order to easily understand the operation principle of the PINN, the sequence in which the

training process during the first iteration/epoch is carried out to minimize the TPE in the simple

cable net model subjected to a concentrated load P = 15 N at the center point, as depicted in

Fig. 3. The pretension force, cross-sectional area, and Young’s modulus of all cables are set

to 200 N, 0.785 mm2, and 124.8 kN/mm2, respectively. Several researchers have previously

investigated this benchmark problem using various algorithms, such as Lewis [20], Halvordson

[51], and Toklu [21], etc. The steps in first epoch then are as follows:
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Problem 01. Simple cable net

Problem 02. Flat cable net 21
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Fig. 3. Simple cable net structure.

Step 1: First, the spatial coordinates of all joints X are set as the entire training data in our

model, which can be easily collected from the geometric information without using

any numerical methods, as follows:

X =


400 0 400 800 400

0 400 400 400 800

0 0 0 0 0

 (17)

And before passing into the NN, the training data is normalized to the range [-1, 1] to

improve the generalization, convergence speed, numerical stability, as well as mitigate

the vanishing gradient [52]. Hence, they are given by:

X =


0 −1 0 1 0

−1 0 0 0 1

−1 −1 −1 −1 −1

 . (18)

Step 2: Next, a network architecture of (3-5-3) is employed for this example, serving as a way

to easily visualize the training process of our proposed approach. Therein, tanh f1 and

linear f2 activation functions are employed for the neurons in the hidden and output
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layers, respectively. They are given by:

f1 (z) =
ez−e−z

ez+e−z ,

f2 (z) = z.
(19)

In addition, all the parameters of the network are initialized with Xavier normal initial-

izer [53], and updated by using Adam optimizer with default values (η = 0.001, β1 =

0.9, β2 = 0.999, ε = 1e-8, m0 = 0, v0 = 0). The initial connection weights between

input layer to hidden layer and hidden layer to output layer are given by:

W(0)
1 =



0.0511 −0.1295 −0.0775

−0.6853 −0.0660 0.4424

−0.1305 0.3052 −0.0049

−0.7237 −0.1019 0.4369

−0.3408 0.3169 0.0961


, (20)

W(0)
2 =


0.1644 0.2378 0.3711 0.0901 −0.3488

−0.2199 −0.0597 −0.0491 −0.0030 0.2563

0.1435 −0.3307 −0.1343 −0.1052 0.2722

 . (21)

The initial biases for the hidden neurons and for the output neuron are expressed as

follows:

b(0)
1 =

[
0.2098 −0.2498 0.1810 0.3017 0.2671

]T
,

b(0)
2 =

[
−0.1622 −0.1871 −0.0719

]T
.

(22)

Step 3: Calculation of the predicted displacement using the FF with Eqs. (1) and (19). At joint

1

h0 = X (:, 1) =

[
0 −1 −1

]T
,

h1 =

[
0.3942 −0.5554 −0.1187 −0.5626 −0.1449

]T
,

h2 =

[
−0.1723 −0.2703 0.2040

]T
=

[
û1 v̂1 ŵ1

]T
.

(23)
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And similarly, for other joints, substituting the h0 vector with the corresponding columns

of X in Eq. (18) yields the predicted displacement field d̂′ of the cable net structure.

After the predicted displacement vector with the fulfilled BCs d̂ is found by using Eq.

(2). These vectors are given in Table 1.

Table 1
The predicted displacements without and with the fulfilled BCs.

d̂′i b̄i d̂i
u1 -0.1723 0 0
v1 -0.2703 0 0
w1 0.2040 0 0
u2 -0.1751 0 0
v2 -0.1319 0 0
w2 0.0524 0 0
u3 -0.1930 1 -0.1930
v3 -0.1766 1 -0.1766
w3 0.2539 1 0.2539
u4 -0.1578 0 0
v4 -0.2494 0 0
w4 0.3072 0 0
u5 -0.2158 0 0
v5 -0.0876 0 0
w5 0.2964 0 0

Step 4: Substitution of the values of d̂ into Eqs. (5)-(13) yields the loss function for the first

iteration

L (θθθ0) = 339.022, (24)

where θθθ0 represents the parameters, including the weights and biases of the network at

the previous iteration.

Step 5: Automatic calculation of the gradients of the loss function with respect to the parame-
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ters by using BP algorithm yields

∂L
∂W(0)

1

=



0.000 0.000 −1.2910

0.000 0.000 8.0488

0.000 0.000 27.9764

0.000 0.000 −6.2491

0.000 0.000 −6.6927


, (25)

∂L
∂W(0)

1

=


−26.4921 56.7886 −17.4123 59.5228 −16.0415

−24.2324 51.9447 −15.9271 54.4457 −14.6732

−4.0523 8.6866 −2.6635 9.1048 −2.4538

 , (26)

∂L
∂b(0)

2

=

[
1.2910 −8.0488 −27.9764 6.2491 6.6927

]
,

∂L
∂b(0)

2

=

[
−94.7423 −86.6611 −14.4922

]
.

(27)

Step 6: Updating of the parameters of the network. Substituting the values of η, β1, β2, ε,

m0 = 0, v0 = 0 and the appropriate gradients into Eqs. (15)-(16) yields the updated

parameters

W(1)
1 =



0.0511 −0.1295 0.0225

−0.6853 −0.0660 0.3424

−0.1305 0.3052 −0.1049

−0.7237 −0.1019 0.5369

−0.3408 0.3169 0.1961


, (28)

W(1)
2 =


0.2644 0.1378 0.4711 −0.1901 −0.2488

−0.1199 −0.1597 0.0509 −0.1030 0.3563

0.2435 −0.4307 −0.0343 −0.2052 0.3722

 , (29)

b(1)
1 =

[
0.1098 −0.1498 0.2810 −0.4017 0.1671

]T
,

b(1)
2 =

[
−0.0622 −0.0871 0.0281

]T
.

(30)

Step 7: Check the stopping criterion (nf < nmax or iteration = epochmax). If the criterion is
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not satisfied, then return to step 3; otherwise, stop the training process.

Table 2
Summary of methods for the nonlinear analysis of cable structures.

Reference Summary Method
Lewis et al. [20, 54] Dynamic relaxation algorithm was developed to minimize

the residual force vector
FEA, Experiment

Toklu et al. [21] Harmony Search algorithm was used to find the structural
response of cable net structures with minimum TPE

TPE

Halvordson [51] Newton Raphson algorithm was applied to minimize TPE TPE
Kwan [55] An analytical technique, which separated the complexity

of anonlinear numerical algorithm from the underlying
structuralprinciples, was developed for the nonlinear
static behavior of cable networks

Analytical

Andreu et al. [13] A new deformable catenary element was derived for the
analysis of cable net structures

FEA

Thai and Kim [14] A spatial two-node catenary cable element was
developed for the nonlinear analysis of cable structures
subjected to static and dynamic loadings

FEA

Thornton et al. [56] An analytical procedure was presented for determining
structural responses

Analytical

Nuhoglu [57] A point-based iterative procedure was suggeted for the
geometrical nonlinear analysis of cable systems

FEA

Abad et al. [1] A novel formulation for spatial catenary cable element
was proposed for nonlinear analysis of cable structures

FEA

3. Numerical experiments

In this section, a series of experiments involving seven numerical examples is conducted

to showcase the simplicity, effectiveness, and validity of the presented procedure for nonlinear

analysis of cable net structures. And many researchers have employed these benchmarks to

evaluate different algorithms using experimental, FEA, TPE, and analytical-based approaches,

as summarized in Table 2. Accordingly, the obtained results will be compared with existing

works available in the literature. Note that the number of neurons in the input and output layers

is set to 2 or 3 for 2- or 3-dimensional problems, respectively. In all considered examples,

a shallow network with only one hidden layer is employed, consisting of no more than 50

hidden neurons. The Tanh activation function and Adam optimizer are recommended for these

networks, while the number of hidden neurons is determined by using Grid search and trial-

and-error methods.
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For verification purposes, the obtained results will be compared with Stiffness Matrix (SM)

and the Differential Evolution (DE) algorithms for minimizing the TPE. Note that for the SM

method, the Euclidean norm of the gradient vector to be less than 0.01 is set as convergence

criteria [20]. In addition, the initial displacement vector and weighting factor is initialized

to a zero value for the first iteration [20]. Besides, the weighting factor p of 0.9 is selected

to control the size of the iterative step [20]. Therein, the parameters for the DE algorithm

are chosen as follows: mutant factor F=0.8, crossover factor Cr = 0.9, population size 40,

maximum number of evaluations 3000, and the convergence criteria value is set to 10−6 [25,

28]. Due to the stochastic nature of the DE algorithm, the optimal solution for each problem

is identified through 10 independent runs. To ensure an impartial comparison between the

different algorithms, all numerical examples were executed on a personal computer using the

Pytorch library with the Python language. Additional experiments were conducted on a laptop

PC equipped with a 2.5 GHz Intel Core i5-7200U CPU and 8 GB of RAM.

3.1. Simple net

As mentioned in Section 2.3 above, the simple net is considered as the first numerical exam-

ple for the nonlinear analysis of cable structure. A 3-layer network (3-10-3) is used to perform

the training task with maximum epochs of 100, as shown in Table 3. To assess the impact of dif-

ferent activation functions and optimizers on the network’s performance, a survey is conducted

to determine the optimal combination based on the aforementioned architecture. The minimum

TPE values are summarized in Table 4. Upon examining all the combinations, it is evident that

Softmax and Adadelta perform poorly as the activation function and optimizer, respectively.

Conversely, the Tanh activation function and Adam optimizer are identified as the optimal

choices, yielding the smallest TPE of (271.80499 N.mm) when combined. Consequently, they

are employed throughout the present study to perform the training process. Simultaneously,

the grid search method is carried out to determine the optimal number of hidden layers as well

as hidden neurons. In order to demonstrate the stability of the model, 20 independent runs

are performed at each grid point. And Fig. 4 illustrates the minimum values of the loss func-

tion for each respective case. The solid dash lines show the mean value of the minimum loss

function, while the transparent areas represent the range between the minimum and maximum

18



values. A comparison of the statistical results, including minimum (Min), maximum (Max),

mean, standard deviation (Std), and 95% Confidence Interval Upper (95% CIU) and Lower

(95% CIU) bounds found by the network with 10 neurons in each hidden layer, are reported in

Table 5. Accordingly, the obtained results demonstrate that the accuracy of the network does

not always improve with an increase in the number of hidden neurons or hidden layers. From

the data in this figure, it should be noted that when the number of hidden neurons exceeded

10, the learning task does not show significant improvement in the results. And it is evident

that the network architecture (3-10-3) is the most appropriate for this specific example, as it

yields the smallest loss function (271.80499 N.mm). More concretely, the range of confidence

interval (95% CI = 271.805003 N.mm to 271.805006 N.mm) changes for narrow and close to

the best (271.804993 N.mm), mean (271.805005 N.mm), and worst (271.805023 N.mm) with

the small relative Std (3.52E-06 N.mm). Furthermore, it can be easily seen that the obtained

standard deviation values were small or close to zero. In addition, there were not significant

differences between the maximum, minimum, mean, and 95% CI values. This demonstrates

the stability of the proposed model.

A comparison of the analysis results gained by the NN and previous studies, including dis-

placements, tension forces, and minimum TPE, is illustrated in Table 6. It can be observed that

the optimal TPE (271.8049926 N.mm) found by the PINN is very close to DE (271.8049723

N.mm), SM (271.8049727 N.mm) with the error less than 0.00001%, and smaller than the

other studies (Lewis [20]: 271.8088 N.mm, Halvordson [51]: 271.8087 N.mm, and Toklu [21]:

271.8088 N.mm). Note that although the result obtained by the DE is the smallest TPE value,

the number of function evaluation is larger than those of the proposed method. More specif-

ically, the SM and PINN only require 3 and 81 iterations for the convergence performance,

while the DE and HS [21] take 1840 and 5000, respectively. This can be easily explained by

the fact that the SM and PINN are based on the gradient descent method to minimize the TPE,

resulting in a significant reduction in computational costs. Meanwhile, the DE and HS [21]

are gradient-free algorithms, so they often require a large number of evaluation functions to

achieve the optimum solution [25]. In addition, according to the data in Table 20, the SM al-

gorithm outperforms both PINN and DE in terms of computational cost. In particular, it only
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takes 0.1418 s seconds for 3 iterations, whereas the PINN and DE require 1.2723 s and 3.2781

s for 81 and 1840 iterations, respectively. Results show that although both algorithms are based

on the gradient descent method, there is a significant difference in computational cost between

the SM and PINN due to the sensitivity analysis. More concretely, the SM algorithm used the

analytical formulation, while the network utilized the approximate sensitivity technique. In

general, our proposed model yields a simple and easily applied method due to automatically

calculate sensitivity, without requiring any inversion of operators, as well as structural analyses.

The convergence history depicted in Fig. 5 provides a detailed performance view of the present

approach. As observed, the convergence speed of the SM algorithm is the fastest, followed by

PINN and DE. In the case of PINN, the learning curve rapidly decreases at the beginning, tends

to stabilize around 50 epochs, and reaches the minimum TPE only after 81 epochs.

Table 3
Hyperparamters of NN model for the cable structures tested in this study.

Test problems NN architecture Activation function Optimizer Epochmax

Simple net (3-10-3) Tanh Adam 100
Flat cable net 2×1 (3-10-3) Tanh Adam 500
Flat cable net 2×2 (3-10-3) Tanh Adam 500
Hyperbolic paraboloid net (3-15-3) Tanh Adam 500
Spatial cable network (3-20-3) Tanh Adam 500
Dual cable (3-30-3) Tanh Adam 500
Saddle net (3-30-3) Tanh Adam 500

Table 4
Minimum total potential energy (N.mm) with various activation functions and optimizers.

Activationfunction
Optimizers

Adam Adagrad Adamax SGD Adadelta
Softmax 272.80164 297.84952 280.89359 300.33197 324.97620
Tanh 271.80499 271.80704 271.80505 295.22107 324.90076
Softplus 271.80658 273.68015 271.93808 299.14709 410.56708
Sigmoid 271.80505 272.17883 273.57019 299.27200 365.66006
ReLU 271.80527 299.22198 279.99429 301.50919 325.41324
LeakyReLU 272.26123 279.71744 271.88046 298.14218 325.06259
Bold used to emphasize the best combination with respect to the smallest TPE
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Fig. 4. Total potential energy of simple net with varying hidden layers and neurons.
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Fig. 5. The convergence history of the loss function for the simple net.
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Table 5
Statistics of displacement (mm), tension (N) and total potential energy (N.mm) results for simple net with 10 neurons in each hidden layer.

Metric
Network architecture

(3-10-3) (3-10-10-3) (3-10-10-10-3)
w3 f1,2,3,4 Πp w3 f1,2,3,4 Πp w3 f1,2,3,4 Πp

Min 6.9755 214.8952 271.804993 6.9700 214.8718 271.805113 6.9737 214.8877 271.805047
Max 6.9849 214.9356 271.805023 6.9894 214.9546 271.805145 6.9879 214.9482 271.805054
Mean 6.9799 214.9142 271.805005 6.9775 214.9040 271.805123 6.9810 214.9191 271.805050
Std 0.0007 0.0028 3.52E-06 0.0018 0.0077 3.40E-06 0.0012 0.0050 7.90E-07
95% CIL 6.9796 214.9130 271.805003 6.9767 214.9006 271.805122 6.9805 214.9169 271.805050
95% CIU 6.9802 214.9154 271.805006 6.9783 214.9074 271.805125 6.9816 214.9213 271.805051

22



Table 6
Comparison of displacement (mm), tension (N) and total potential energy (N.mm) results for
simple net.

Lewis Halvordson Toklu Present
[20] [51] [21] DE SM PINN

u3 0 0 0 0 0 0.0000
v3 0 0 0 0 0 0.0000
w3 6.9700 6.9800 6.9700 6.9804 6.9795 6.9807
f1,2,3,4 214.9000 214.9146 214.9000 214.9110 214.9127 214.9178
Πp 271.8088 271.8087 271.8088 271.8050 271.8050 271.8050
Bold used to emphasize the best minimum TPE

Problem 01. Simple cable net

Problem 02. Flat cable net 21
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Fig. 6. Flat cable net 2 × 1.

3.2. Flat cable net 2×1

Next, a flat system, as shown in Fig. 6, is examined as the second example for the nonlinear

analysis of cable net structures. In this case, all cable members are set the same cross-sectional

areas, Young’s modulus, and pretension force of 2 mm2, 110 kN/mm2, and 500 N, respectively.

The system is subjected to a vertical load P = 200 N at nodes 3 and 6. In addition, the network

configuration reported in Table 3 is used to train the network. Similar to the first example, the

obtained analysis results from the proposed work are summarized in Table 7 for comparative

evaluation with other algorithms. The results indicate that the PINN (-37471.21 N.mm) outper-

forms other approaches (DE: -37471.21 N.mm; SM: -37471.00 N.mm; Lewis [20], Halvordson

[51], and Toklu [21]: -37448.49 N.mm), having the smallest energy value of TPE. And this fur-

ther strengthens the evidence of the efficacy of the proposed model. Fig. 7 shows the potential
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energy convergence history obtained by DE, SM, and PINN. It can be easily seen that the pre-

sented model converges very quickly in the early epoch of training, requiring only 417 epochs.

In contrast, the DE used 4840 iterations to achieve the solution. As an initial example, it was

observed from the data in Table 20 that our framework (417) requires more iterations than that

of the SM (12), so its computation cost (3.9432 s) increases more than 6 times compared with

the SE (0.6337 s).

Table 7
Comparison of displacement (mm), tension (N) and total potential energy (N.mm) results for
flat cable net 2 × 1.

Lewis Halvordson Toklu Present
[20] [51] [21] DE SM PINN

u3 0.00 0.00 0.00 0 0.00 0.00
v3 -3.30 -3.30 -3.30 -3.30 -3.29 -3.30
w3 199.70 199.70 199.70 199.74 199.43 199.75
u6 0.00 0.00 0.00 0.00 0.00 0.00
v6 3.30 3.30 3.30 3.31 3.29 3.30
w6 199.70 199.70 199.70 199.78 199.43 199.75
f1,7 1232.80 1232.80 1232.80 1233.28 1230.99 1233.25
f4 1225.40 1225.40 1225.40 1226.52 1223.68 1226.14
f2,3,5,6 774.00 774.00 774.00 774.22 773.34 774.22
Πp -37448.49 -37448.49 -37448.49 -37471.20 -37471.00 -37471.21
Bold used to emphasize the best minimum TPE
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Fig. 7. The loss convergence history of the flat cable net.

3.3. Flat cable net 2×2

The next analysis problem deals with the flat cable net 2×2 shown in Fig. 8. This structure

consists of 12 cables, with four joints allowing free movement and other constrained joints. All

members have the same linear elastic modulus of 124.8 kN/mm2 and cross-sectional area of

0.785 mm2. Before applying the external load, all cable segments are pretensioned to carry a

force of 200 N. A concentrated load of P = 15 N is then applied in the z-direction at joints 4, 5,

and 8. This benchmark has been widely examined by researchers, including Lewis [20], Kwan

[55], Halvordson [51], and Toklu [21], to evaluate the effective implementation of algorithms.

For this specific application, the NN consists of one hidden layer with 10 hidden neurons, and

the training phase is performed over 500 epochs.
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Problem 03. Flat cable net 22

Problem 04. Hyperbolic paraboloid net 
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Fig. 8. Flat cable net 2 × 2.

Likewise, Table 8 provides a comparison of the solution obtained by the network and other

methods. It is noticed that in this example, the PINN achieves the best minimum TPE (704.8126

N.mm). Compared to the computational cost, the PINN (303) requires more evaluations than

SM (34), but our model takes 3.2566 s compared to SM’s 1.972 s, as shown in Table 20.

Despite utilizing the principle of minimizing the TPE function, the HS [21] and DE take 10000

and 11680 evaluations to achieve the same objective. Hence, our approach outperforms well-

known existing algorithms in term of the solution quality. These experimental results have

revealed that our approach not only demonstrates simplicity in performance but also ensures

the quality of the solution.

3.4. Hyperbolic paraboloid net

In the fourth example, the analysis problem of the hyperbolic paraboloid cable net system is

investigated. This structure was previously experimentally tested by Lewis [54] and addressed

by researchers, such as Kwan [55], Sufian [58], Thai [14], and Andreu [13]. The geometry,

dimensions, and boundary condition of the system are depicted in Fig. 9 and Table 10. The

modulus of linear elasticity is 128.3 kN/mm2 and the cross-sectional area is 0.785 mm2 for all

cable members. The initial structure geometry is established by applying the same pretension

force of 200 N to all cables. Additionally, a concentrated downward load of 15.7 N is applied

at several free joints, as shown in Fig. 9. A grid search similar to the first numerical example is

used to estimate the network configuration.
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Table 8
Comparison of displacement (mm), tension (N) and total potential energy (N.mm) results for
flat cable net 2 × 2.

Lewis Kwan Halvordson Toklu Present
[20] [55] [51] [21] DE SM PINN

u4 -0.07 -0.08 -0.07 -0.07 -0.071 -0.071 -0.071
v4 -0.07 -0.08 -0.07 -0.07 -0.071 -0.071 -0.071
w4 12.19 12.17 12.20 12.17 12.172 12.169 12.172
u5 0.04 0.04 0.04 0.04 0.041 0.042 0.042
v5 -0.08 -0.08 -0.08 -0.08 -0.078 -0.078 -0.078
w5 11.20 11.18 11.20 11.18 11.184 11.180 11.183
u8 -0.10 -0.08 -0.08 -0.08 -0.077 -0.078 -0.078
v8 0.00 0.05 0.04 0.04 0.041 0.042 0.042
w8 11.20 11.18 11.20 11.18 11.186 11.180 11.183
u9 0.00 -0.04 -0.04 -0.04 -0.038 -0.039 -0.039
v9 0.00 -0.04 -0.04 -0.04 -0.039 -0.039 -0.039
w9 5.60 5.59 5.59 5.59 5.596 5.591 5.592
f1 228.10 225.75 228.42 228.20 228.087 228.010 228.012
f2 219.30 218.67 218.81 218.67 219.222 219.231 219.229
f4 228.00 229.69 227.25 227.24 227.737 227.869 227.882
f5 228.10 228.47 228.60 228.47 228.210 228.024 228.044
f7 219.20 219.36 219.43 219.36 219.074 219.119 219.132
f10 219.10 219.36 219.36 219.36 218.960 219.054 219.066
Πp 706.9226 704.8925 704.8477 704.8458 704.8128 704.8170 704.8126
Bold used to emphasize the best minimum TPE
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As the previously presented simple net, the minimum values of the TPE for each grid point

are illustrated in Fig. 10. Once more, the increase in the number of hidden layers or hidden

neurons did not always improve the accuracy of the network. From this graph, the network

with 15 and 10 neurons in each hidden layer are found as the best architectures for single, two,

and three hidden layers, respectively. And the comparison of the statistical displacements and

TPE found by three optimal network configuration are tabulated in Table 9. Clearly, the net-

work (3-15-3) outperforms all other models in terms of the accuracy and significantly reduces

the training parameters. More concretely, the 95%CI (1074.1760 - 1074.1807 N.mm) values of

the TPE found by this architecture are quite close the minimum (1074.1707 N.mm) and max-

imum (1074.2742 N.mm) values with very small Std (5.31E-03 N.mm). Hence, this network

configuration is utilized to determine the structural responses. Furthermore, compared with the

previously flat cable nets, it can be observed that when the complex cable net structure, the

network requires more hidden neurons to achieve the accuracy.

As shown in Tables 10 and 20, the obtained displacements reveal that our approach closely

matches the experimental result found by Lewis [54]. It is evident that the network can accu-

rately calculate the behavior of cable with the lowest error values (min=0.11%; max=1.49%;

mean=0.76%), and then Toklu [21], SM, Sufian [58], Kwan [55], Thai [14], and Andreu [13],

respectively. And this approach demonstrates considerable efficiency compared to traditional

numerical methods when increasing the complexity of the cable net structure. Specifically,

our framework takes only 6.1750 s for 392 iterations, while the SM requires 8.4369 s for 200

iterations to achieve as accurate solutions as possible.
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Problem 03. Flat cable net 22

Problem 04. Hyperbolic paraboloid net 
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Fig. 9. Hyperbolic paraboloid net.

5 10 15 20 25 30
1050

1100

1150

1200

1250

1300

1350

1400

1450
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Table 9
Statistics of displacement (mm) and total potential energy (N.mm) results for the best network configuration.

Metric

Network architecture
(3-15-3) (3-15-15-3) (3-10-10-10-3)

w11 w16 Πp w11 w16 Πp w11 w16 Πp

Min 33.6010 30.6222 1074.1707 31.9714 29.6982 1075.0552 32.4153 30.2127 1074.1785
Max 33.6517 30.6440 1074.2742 33.9121 30.8819 1081.1033 33.8578 30.7709 1077.8704
Mean 33.6340 30.6408 1074.1783 33.4885 30.4677 1076.8674 33.5806 30.5759 1075.3313
Std 0.0025 0.0011 5.31E-03 0.0959 0.0589 3.13E-01 0.0675 0.0303 2.71E-01
95% CIL 33.6329 30.6403 1074.1760 33.4465 30.4419 1076.7302 33.5509 30.5626 1075.2124
95% CIU 33.6351 30.6413 1074.1807 33.5305 30.4936 1077.0046 33.6102 30.5891 1075.4503
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Table 10
Comparison of vertical displacements (mm) for hyperbolic paraboloid net system.

Node
Lewis [54] Toklu Kwan Sufian Thai Andreu Present

(Experiment) [21] [55] [58] [14] [13] SM PINN
5 19.50 19.48 (0.10)a 19.52 (0.10) 19.3 (1.03) 19.56 (0.31) 19.51 (0.05) 19.35 (0.77) 19.36 (0.74)
6 25.30 25.59 (1.15) 25.35 (0.20) 25.5 (0.79) 25.70 (1.58) 25.65 (1.38) 25.35 (0.19) 25.36 (0.23)
7 22.80 23.17 (1.62) 23.31 (2.24) 23.1 (1.32) 23.37 (2.50) 23.37 (2.50) 23.04 (1.05) 23.05 (1.09)

10 25.40 25.75 (1.38) 25.86 (1.81) 25.8 (1.57) 25.91 (2.01) 25.87 (1.85) 25.60 (0.79) 25.61 (0.84)
11 33.60 33.86 (0.77) 34.05 (1.34) 34.0 (1.119) 34.16 (1.67) 34.14 (1.61) 33.62 (0.06) 33.64 (0.11)
12 28.80 29.27 (1.63) 29.49 (2.40) 29.4 (2.08) 29.60 (2.78) 29.65 (2.95) 29.08 (0.98) 29.09 (1.02)
15 25.20 25.65 (1.79) 25.79 (2.34) 25.7 (1.98) 25.86 (2.62) 25.86 (2.62) 25.36 (0.62) 25.37 (0.66)
16 30.60 30.96 (1.18) 31.31 (2.32) 31.2 (1.96) 31.43 (2.71)) 31.47 (2.84) 30.63 (0.09) 30.64 (0.14)
17 21.00 21.03 (0.14) 21.42 (2.00) 21.1 (0.48) 21.56 (2.67) 21.57 (2.71) 20.83 (0.82) 20.84 (0.78)
20 21.00 21.33 (1.57) 21.48 (2.29) 21.1 (0.48) 21.57 (2.71) 21.62 (2.95) 20.57 (2.06) 20.77 (1.08)
21 19.80 19.67 (0.66) 20.00 (101) 19.9 (0.51) 20.14 (1.72) 20.15 (1.77) 19.79 (0.04) 19.70 (0.51)
22 14.20 14.04 (1.13) 14.40 (1.41) 14.3 (0.47) 14.55 (2.46) 14.55 (2.46) 14.41 (1.45) 14.41 (1.49)

Error (%)
Min 0.10 0.10 0.48 0.31 0.05 0.04 0.11
Max 1.79 2.40 2.08 2.78 2.95 2.06 1.49

Mean 1.16 1.91 1.11 2.48 2.48 0.75 0.76
Πp - - - - - - 1074.21 1074.17

a Values in parentheses are the percentage error with respect to experiment displacements
Bold used to emphasize the smallest error
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3.5. Spatial cable network

Next, the geometry nonlinear analysis of the spatial cable system is regarded as the fifth

problem, which has been previously examined by Lewis [20], Thai [14], and Toklu [21]. The

geometry and z-coordinates of joints are illustrated and listed in Fig. 11 and Table 11, respec-

tively. This structure exhibits mirror symmetry along both central axes. To reach the initial

geometry of the system, the pretension forces of 90 kN and 30 kN are applied to the cables in

the x- and y-directions, respectively. The cross-sectional areas of the members in the x- and

y-directions correspond to 350 mm2 and 120 mm2, and the Young’s modulus of cables is 160

kN/mm2. A vertically concentrated load of 6.8 kN is applied to all free joints of the structure.

In addition, the parameters of the network, as listed in Table 3, provide the finest performance
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Fig. 11. Spatial cable net system.

Tables 12 and 20 present a comparison between the results obtained by the current method

and alternative methods. It is evident from this data that the network achieves a smaller mini-

mum TPE value (6504280 N.mm) compared to other algorithms (SM: 6504282 N.mm; Lewis

[20]: 6505782 N.mm; Thai [14]: 6505527 N.mm; Toklu [21]: 6505019 N.mm). Thus, our

model enhances the accuracy of the structural responses. In this example, the SM algorithm

(6.4299 s) has a slightly lower computational cost than the proposed scheme (8.1858 s). How-

ever, it should be noted that the initial displacement vector of the SM algorithm is set to zero,

while the parameters of the network are initialized randomly. This is partially due to the in-
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creased computational cost when the initial point is far from the solution.

Table 11
Z-coordinate (mm) of nodes for spatial net.

Node 1 2 3 6 7 8 9 13 14 15 16
z-coord(mm) 1000 2000 3000 0 820 1410 1677 0 687 1148 1318

Table 12
Comparison of vertical displacements (mm) and total potential energy (N.mm) results for
spatial net.

Lewis Thai Toklu Present
[20] [14] [21] SM PINN

u7 -5.14 -5.03 -5.03 -5.030 -5.031
v7 0.42 0.41 0.40 0.398 0.397
w7 30.41 29.86 29.46 29.451 29.463
u8 -2.26 -2.23 -2.22 -2.225 -2.226
v8 0.47 0.46 0.39 0.393 0.392
w8 17.70 17.29 17.08 17.098 17.117
u9 0 0 0 0.000 0.001
v9 -2.27 -2.31 -3.12 -2.356 -2.355
w9 -3.62 -3.61 -3.19 -3.199 -3.186
u14 -4.98 -4.92 -4.92 -4.921 -4.928
v14 0 0 0 0.000 0.000
w14 43.49 42.85 42.84 42.828 42.894
u15 -2.55 -2.55 -2.55 -2.548 -2.558
v15 0 0 0 0.000 0.000
w15 44.47 44.26 44.27 44.242 44.366
u16 0 0 0 0.000 0.000
v16 0 0 0 0.000 0.000
w16 41.65 42.08 42.08 42.055 42.091
Πp 6505782 6505527 6505019 6504282 6504280

Bold used to emphasize the best minimum TPE

3.6. Dual cable

A dual cable structure, as shown in Fig. 12 and Table 13, is studied for the next nonlinear

analysis. Prior to the application of external loads, the initial shape is designed with pretension

forces, which are listed in Table 13 for the parabolic-shaped tie-down and load cables. All

cables are made of a material having an elasticity modulus of 165.54 GN/m2. The hanger

cables have a cross-sectional area of 64.5 mm2, while the other cables have a cross-sectional

area of 645 mm2. In this example, the system is subjected to two distinct loading conditions
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as outlined below: 1) concentrated vertical forces in the negative z-direction, corresponding

triangularly to the distributed loading, are applied to the joints of the tie-down cable. The

values undergo linear variation, starting from 1.335 kN at joint 1 and increasing to 12.015 kN

at joint 17; 2) a concentrated force of 50 kN is applied to joint 9 along the y-direction. The

network configuration, as mentioned in Table 3, is employed to perform the training task.

The analysis results, including displacements, axial forces, and computational time, ob-

tained by the present approach and other works are reported in Tables 14, 15, 16, and 20. As

expected, the structural responses obtained are in agreement with those reported by Thornton

[56], Nuhoglu [57], Toklu [21], and the SM algorithm. And it is obvious that the minimum TPE

obtained by our model is the smallest for both loading cases. Furthermore, the computational

cost of the present method is still smaller than that of the SM. Consequently, the suggested

approach generally outperforms existing ones in terms of accuracy and efficiency.
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Table 13
Joint coordinates and pretension forces for dual cable net.

Coordinates (mm) Pretension forces (kN)
Node x z Node x z Member Forces Member Force Member Force

1 -12194 -4633 7 -3048 -3719 20-2 23.65 21-1 45.22 1-2 1.78
2 -12194 -1097 8 -3048 -2926 2-4 23.1 1-3 44.94 3-4 1.78
3 -9144 -4206 9 0 -3658 4-6 22.69 3-5 44.72 5-6 1.78
4 -9144 -1951 10 0 -3048 6-8 22.41 5-7 44.58 7-8 1.78
5 -6096 -3901 20 -15240 0 8-10 22.27 7-9 44.51 9-10 1.78
6 -6096 -2560 21 -15240 -5182 Note: System is symmetric about to z axis.
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Table 14
Comparison of displacement (mm) and total potential energy (N.mm) results for dual cable net (case 1).

Node
Thornton [56] Nuhoglu [57] Toklu [21] SM PINN
u w u w u w u w u w

1 -21.30 110.60 -21.90 112.80 -21.62 111.77 -21.94 113.39 -21.94 113.41
2 39.30 111.30 40.20 114.30 39.70 112.54 40.24 114.18 40.25 114.19
3 -25.90 146.60 -26.80 151.20 -26.36 148.49 -26.82 151.27 -26.83 151.29
4 50.30 146.00 51.80 150.80 50.88 148.18 51.74 150.94 51.75 150.95
5 -23.20 125.30 -23.70 130.10 -23.66 126.74 -24.10 129.69 -24.10 129.70
6 46.90 123.40 48.40 128.60 47.64 125.56 48.54 128.45 48.55 128.45
7 -19.80 66.80 -20.40 69.50 -20.12 67.55 -20.49 69.66 -20.49 69.66
8 40.50 63.10 42.00 67.60 41.18 66.67 41.97 67.69 41.98 67.69
9 -20.40 -8.80 -19.20 -9.70 -18.99 -10.39 -19.33 -9.70 -19.34 -9.71

10 37.80 -13.70 39.00 -12.20 38.35 -12.66 39.06 -12.07 39.06 -12.08
11 -20.40 -84.40 -21.30 -88.40 -20.97 -87.42 -21.34 -88.20 -21.34 -88.23
12 41.10 -87.80 42.30 -90.20 41.77 -89.29 42.51 -90.15 42.52 -90.18
13 -23.80 -140.80 -24.70 -146.00 -24.37 -144.30 -24.80 -146.25 -24.81 -146.29
14 48.50 -142.30 49.90 -146.90 49.30 -145.00 50.18 -147.19 50.19 -147.22
15 -25.30 -158.20 -25.90 -162.10 -25.53 -160.28 -25.95 -162.75 -25.96 -162.79
16 53.00 -157.90 53.00 -162.10 53.59 -159.53 54.54 -162.05 54.55 -162.08
17 -19.20 -118.00 -19.80 -120.70 -19.52 -118.81 -19.83 -120.70 -19.83 -120.73
18 42.30 -115.20 43.30 -117.60 42.50 -115.68 43.27 -117.61 43.28 -117.63
Πp -1994844 -2021280 -2170278 -2171202 -2171203

Bold used to emphasize the best minimum TPE
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Table 15
Comparison of displacement (mm) and total potential energy (N.mm) results for dual cable net (case 2).

Node
Nuhoglu [57] Toklu [21] SM PINN

u v w u v w u v w u v w
1 -4.90 150.60 46.30 -4.95 150.45 46.38 -4.92 150.45 46.16 -4.94 150.62 46.30
2 14.00 191.40 49.70 13.94 191.07 49.67 13.85 191.21 49.43 13.88 191.42 49.58
3 -7.00 299.90 85.60 -7.05 299.84 85.83 -7.01 299.76 85.47 -7.05 300.13 85.81
4 20.10 385.00 86.30 20.17 384.61 86.36 20.04 384.75 85.99 20.11 385.10 86.32
5 -6.40 444.40 116.40 -6.45 444.35 116.25 -6.43 444.25 115.93 -6.45 444.84 116.17
6 20.40 586.70 109.70 20.31 586.04 109.78 20.18 586.23 109.43 20.21 586.88 109.66
7 -3.90 576.10 144.80 -3.99 575.84 144.77 -3.98 575.61 144.59 -4.00 576.33 144.88
8 14.00 810.50 109.40 14.18 810.28 109.74 14.09 810.17 109.53 14.11 811.11 109.75
9 0.00 677.00 194.80 0.00 676.74 195.26 0.00 676.37 195.10 0.00 677.23 195.45

10 0.00 1086.60 38.70 0.00 1087.10 38.70 0.00 1086.37 38.84 0.00 1087.42 39.02
Πp -39504210 -39516190 -39520128 -39520199

Bold used to emphasize the best minimum TPE
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Table 16
Comparison of axial forces (kN) results for dual cable net.

Member
Case 1

Member
Case 2

Nuhoglu [57] SM PINN Nuhoglu [57] SM PINN
10-12 115.30 115.27 115.74 20-2 177.55 177.43 177.0652
12-14 116.63 116.66 116.31 2-4 173.98 173.86 173.83
14-16 118.90 118.87 118.56 4-6 171.34 171.23 171.26
16-18 122.20 122.11 122.43 6-8 169.82 169.70 170.07
18-19 126.65 126.56 125.59 8-10 169.42 169.30 169.40
21-1 68.53 68.53 68.18 21-1 294.79 298.36 298.93
1-3 67.64 67.62 67.93 1-3 297.03 296.15 296.81
3-5 66.88 66.90 66.77 3-5 295.22 294.35 294.97
5-7 66.26 66.26 66.37 5-7 293.85 292.99 293.54
7-9 65.55 65.54 65.35 7-9 293.00 292.15 292.88

9-10 9.26 9.28 9.78 1-2 12.50 12.53 12.54
11-12 10.10 10.10 10.62 3-4 12.61 12.61 12.57
13-14 10.99 10.99 11.58 5-6 12.09 12.09 12.02
15-16 11.88 11.91 12.01 7-8 10.00 9.97 10.05
17-18 12.82 12.83 12.92 9-10 28.85 28.73 28.75

3.7. Saddle net

A saddle cable net, as depicted in Fig. 13, is considered as the last nonlinear analysis

problem. Table 17 displays the z-coordinates for a quarter of the cable net, which exhibits

mirror symmetry across both centerlines. A pretension force of 60 kN is applied to all cable

segments to achieve the initial configuration. The elasticity modulus and cross-sectional area

for all cables are taken as 147 kN/mm2 and 306 mm2, respectively. The cable net is subjected to

forces in the x- and z-directions, with magnitudes of 1 kN at joints 11-15, 22-25, 33-37, 44-48,

55-59, 66-70, and 77-81. The network, with parameters mentioned in Table 3, is established

for the training operation. Tables 18, 19, and 20 provide a comparison of solutions found by

the proposed framework and previous studies. It is worthwhile to note that the SM algorithm

can not converge. As pointed out by Lewis [20], this is due to numerical ill-conditioning during

the inversion of the stiffness matrix. Therefore, the optimization process stability depends on

a well-behaved tangent stiffness matrix. Meanwhile, our approach does not require calculating

the stiffness matrix, as well as matrix inversion operations. Hence, it avoids the numerical ill-

conditioning problems. Obviously, the data reveals a fairly good agreement between our model

and the results reported by other authors.
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Fig. 13. Saddle net.

Table 17
Z-coordinates (mm) of nodes for saddle net.

Node z Node z Node z
1 -1368 22 -792 44 -600
2 -2432 23 -1408 45 -1067
3 -3192 24 -1848 46 -1400
4 -3648 25 -2118 47 -1600
5 -3800 26 -2200 48 -1667

11 -1032 33 -648
12 -1835 34 -1152
13 -2408 35 -1512
14 -2752 36 -1728
15 -2867 37 -1800
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Table 18
Comparison of displacement (mm) and total potential energy (N.mm) results of saddle net.

Node
Thai [14] Kwan [55] Abad [1] PINN

u v w u v w u v w u v w
11 15.55 -4.46 81.70 15.55 -4.46 81.66 15.57 -4.46 81.79 15.55 -4.46 81.70
12 11.50 -5.55 61.22 11.50 -5.54 61.18 11.51 -5.55 61.28 11.51 -5.55 61.24
13 7.38 -4.20 33.31 7.38 -4.19 33.28 7.39 -4.20 33.36 7.39 -4.19 33.31
14 5.34 -3.11 17.88 5.34 -3.11 17.87 5.34 -3.11 17.92 5.39 -3.25 18.61
15 4.11 -2.80 11.16 4.10 -2.80 11.15 4.10 -2.80 11.21 4.13 -2.66 10.45
22 14.43 -3.53 97.14 14.42 -3.53 97.10 14.44 -3.53 97.29 14.41 -3.52 97.02
23 11.27 -4.47 72.90 11.26 -4.46 72.84 11.28 -4.47 73.03 11.26 -4.47 72.87
24 7.25 -2.97 31.98 7.25 -2.97 31.94 7.25 -2.98 32.09 7.24 -2.96 31.94
25 5.67 -2.12 10.54 5.67 -2.11 10.52 5.67 -2.12 10.64 5.67 -2.17 10.71
26 4.77 -0.60 -11.34 4.77 -0.60 -11.34 4.77 -0.60 -11.22 4.77 -0.61 -11.05
33 11.71 -1.71 92.44 11.70 -1.71 92.40 11.72 -1.71 92.63 11.72 -1.71 92.44
34 9.55 -2.11 66.94 9.54 -2.11 66.89 9.56 -2.11 67.13 9.57 -2.11 66.95
35 6.30 -1.15 20.21 6.30 -1.15 20.17 6.31 -1.16 20.37 6.34 -1.15 20.23
36 4.92 -0.23 -14.05 4.91 -0.23 -14.06 4.92 -0.23 -13.88 4.95 -0.25 -14.21
37 4.65 0.52 -35.79 4.65 0.52 -35.77 4.65 0.52 -35.59 4.70 0.51 -35.56
44 10.63 0 88.73 10.62 0 88.68 10.64 0 88.93 10.61 0.00 88.69
45 8.80 0 62.83 8.79 0 62.77 8.81 0 63.04 8.77 0.00 62.76
46 5.83 0 13.99 5.83 0 13.95 5.84 0 14.18 5.79 0.00 13.90
47 4.64 0 -22.52 4.63 0 -22.52 4.64 0 -22.32 4.58 0.00 -22.71
48 4.55 0 -45.89 4.54 0 -45.87 4.54 0 -45.66 4.49 0.00 -45.76
52 -0.92 0 5.86 -0.92 0 5.86 -0.94 0 6.10 -0.95 0.00 5.96
72 3.85 -0.78 -30.12 3.85 -0.78 -30.10 3.84 -0.77 -29.94 3.82 -0.75 -29.90
81 4.11 2.80 11.16 4.10 2.80 11.15 4.10 2.80 11.21 4.12 2.70 10.66
85 -5.40 1.87 32.17 -5.40 1.87 32.15 -5.42 1.88 32.28 -5.40 1.87 32.18
Πp - - - 27008696
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Table 19
Comparison of axial forces (kN) results for saddle net.

Member Kwan [55] Lewis [59] PINN
11-12 53.70 54.14 53.703
23–24 57.80 58.12 57.775
47–48 62.51 62.78 62.483
60–61 59.90 60.18 59.952
72–73 54.83 55.16 54.856
85–86 50.23 50.60 50.215
1–11 75.43 75.52 75.432

24–35 69.30 69.56 69.254
28–39 48.00 48.28 48.055
62–73 57.37 57.61 57.382
67–78 78.69 78.89 78.687
85–95 63.55 63.66 63.542

4. Discussion

From Table 20, it is easily noticeable that the SM algorithm requires considerably fewer

iterations than the PINN in 5 out of 8 problems. In terms of the computational time, the effi-

ciency of the SM method performs better than the PINN, but only for simple problems, such

as those given in numerical examples 1-5. In more complex cable net structures 6-8, a sub-

stantial amount of time is spent on solving the linear equations through matrix inversion. Note

that the PINN framework needed more iterations than SM, but it was a simple and easily ap-

plied method without calculating any inverse operators. Besides, the BP algorithm allows to

automatically calculate the sensitivity of the TPE with respect to the parameters of the network.

Furthermore, one of the most important features of the NN is its capability to approximate mul-

tivariate nonlinear function. For all these reasons, the efficiency of the PINN was demonstrated

through the complex cases compared with the conventional algorithm.
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Table 20
Efficiency of the different algorithms.

Example

No. of SM PINN
dofs Total no. of CPU time per Total CPU Total no. of CPU time per Total CPU

iterations iteration (sec) time (sec) iterations iteration (sec) time (sec)
Simple net 3 3 0.0473 0.1418 81 0.0157 1.2723
Flat net 2×1 6 12 0.0528 0.6337 417 0.0095 3.9432
Flat net 2×2 12 34 0.0580 1.9720 303 0.0107 3.2566
Hyperbolic net 36 200 0.0422 8.4369 392 0.0158 6.175
Spatial net 45 85 0.0756 6.4299 486 0.0158 8.1858
Dual case 1 54 900 0.0173 15.5639 459 0.0258 13.0777
Dual case 2 54 1700 0.0137 23.3420 493 0.0284 14.0182
Saddle net 189 - 0.7813 - 475 0.1034 49.1059
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In terms of the accuracy, the obtained results above indicated that our model outperforms

other methods. In these cable net structures, our model identified the best smallest TPE in 7

out of 8 problems, while the SM algorithm failed to converge in the case of the saddle net. It is

obvious that the accuracy associated with the inversion problem of the stiffness matrix method

depends on the conditioning of the original matrix. And this is one major drawback leading to

the instability of the SM algorithm. In addition, as pointed out by Lewis [20], the selection of

the initial point as well as the weighting factor also influences the accuracy.

For the PINN framework, despite its advantages, the implementation may face certain chal-

lenges that are yet to be resolved. Firstly, the solutions may be trapped in local minimum due to

initial parameters. Secondly, Grid search and trial-and-error methods were employed to choose

the best-fitted network, so it depends on user experience too much. Hence, the hyperparame-

ters of the network need to be automatically tuned using an optimization algorithm. Another

challenge is related to changes in conditions, such as loads, BCs, and so on, that occur when

the network has to be iteratively re-trained.

5. Conclusions

In this study, a robust physics-informed NN framework has been successfully applied to

accurately estimate the nonlinear behavior of cable net structures due to the changes of geom-

etry. In order to achieve the objective, the network is constructed to guide the learning process

by minimizing the TPE, which serves as the derivative-free loss function. And the mechani-

cal behaviors of the cable net are found immediately at the training end. The simplicity and

effectiveness of the proposed scheme are demonstrated through numerical examples for the

geometric nonlinear analysis of cable net structures. The obtained results clearly demonstrate

that our approach outperforms existing algorithms, achieving the smallest TPE values. One

interesting aspect of this model is its ability to accurately and simply capture the nonlinear be-

havior of cable nets without requiring any structural analyses. Moreover, the model’s learning

capability solely relies on the joint coordinates provided as training data. On the other hand,

the sensitivity of the TPE can be easily and quickly determined by utilizing the automatic dif-

ferentiation, which is integrated into the NN model. With these remarkable characteristics,
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the proposed approach shows great promise in offering a novel method for tackling nonlinear

structural analysis problems without relying on FEA.

However, the implementation of this study may encounter some challenges which have still

left unsolved. To overcome the computing challenges, there are several promising directions

for future work. First, future studies can significantly automate the tuning of hyperparameters

during the training process. And surrogate-based optimization algorithms are well-suited for

this task, such as Bayesian optimization technique. Next, the development of optimizers can

incorporate self-adaptive momentum to avoid getting trapped in a local optimum, which is

promising to circumvent these shortcomings. In addition, the combination of PINN and transfer

learning is another promising strategy for generalizing to new conditions, which may help

predict structural behaviors without re-training the model.
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