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Abstract

Machine learning (ML) is a powerful tool in many diffenent fields. However, its training pro-
cess is still challenging when applied to different types of problems. Specifically, the hyper-
parameters tuning and data play an important role in improving the model accuracy. In this
paper, an multi-infill criterion is developed to collect the data and Bayesian optimization (BO)
is utilized to tune hyperparameters of a ML model. Accordingly, the machine learning-based
surrogate model replace finite element analyses (FEAs) to predict the structural responses, and
then Differential evolution (DE) algorithm is used to resolve the structural optimization prob-
lems. Three numerical examples are investigated to demonstrate the efficiency of the proposed
method.

Keywords: Bayesian optimization (BO), Tuning hyperparameter, Neural network, Multi-infill
criterion, Structural optimization

1. Introduction

ML application to computational mechanics has special attention of researchers [1]. And,
many studies have been carried out on issues relating such as structural analysis [2], fracture
prediction [3, 4], nonlinear analysis [5], structural optimization [6], etc. It requires a large
enough dataset to achieve good performance [3]. So, the training data depend strongly on
the problem and data collection techniques, especially for expensive problems. On the other
hand, hyperparameter optimization (HPO) for such models is also a computationally expensive
problem and determine the efficiency of ML model [7]

To overcome this problem, decision-theoretic algorithms including Grid search (GS) and
Random search (RS) are used to find hyperparameters in the search space [8], but it spends a
lot of time evaluating poorly-performing areas of the design space. In order to deal with these
shortcomings, BO with different surrogate models such as Gaussian process (GP), Random
forest (RF), and Tree-structured Parzen Estimator (TPE) have received attentions in the HPO
field. Its effectiveness in solving optimization problems for costly objective functions with
fewer iterations has shown in many studies [9].

In this study, an new data-collection strategy is presented to combine HPO into the GP-
relied Bayesian framework to build ML model. The ML-based surrogate model is used to es-
timate structural responses replacing the conventional FEAs. And, differential evolution (DE)
algorithm is utilized to resolve structural optimization problems. In which, a multi-infill cri-
terion based on BO with constraints is developed to provide maximum information about the

∗Corresponding author. E-mail: jhlee@sejong.ac.kr
1E-mail: maitienhaunx@gmail.com

Preprint submitted to ICCM2021 July 5, 2021



feasible region. The expected improvement (EI) is used to improve the ML model through tun-
ing hyperparameters. Three numerical examples are investigated to demonstrate the validity of
the presented method.

The remainder of this paper is organized as follows. A brief description of the ML model
is presented in Section 2. Section 3 provides the BO algorithm for the HPO problem. A new
multi-infill criterion is suggested in Section 4. Next, three numerical examples are investigated
in Section 5. Finally, some conclusions are summarized in Section 6.

2. Machine learning

The ML model is designed to model the relationship of an input-output dataset through a
training process by analyzing data and adjusting weights and biases. In this study, the neural
network (NN) is utilized to predict the response mechanical responses of truss structures due
to its prominent features [10]. The basic architecture of a fully connected NN comprises one
input layer, one or more hidden layers, and one output layer. Each layer contains a number
of neurons, and there is connection between each two neurons of two consecutive layers via
weights and biases as in Fig. 1. The output value at each neuron of the ith layer is given by Eq.
(1)
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Fig. 1. Architecture of a fully connected neural network.

h(i) = G
(
W(i)h(i−1) + b(i)

)
∀i = 0, 1, ..., N, (1)

where (N + 1) is the total number of layers; h(0) = x is the input vector; h(N) = ŷ stands
for the output vector; h(i) symbolizes the output vector of the ith hidden layer for i 6= 0, N ;
W(i) denotes the weight matrix connecting the (i− 1)th layer to ith layer; b(i) indicates the
bias vector of the ith layer; G (.) is the activation function. It should be noted that the linear
activation function of the output layer is chosen for regression problems [11].

In supervised ML, the network learns from the difference in the predicted output and the
target output. To do this, an optimization algorithm is utilized to minimize the mean square
error (MSE). It can be expressed as follows

EMSE =
1

n

n∑
j=1

(yj − ŷj)2, (2)
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where yj and ŷj are the target and predicted output values, respectively, and n is the number of
output units multiplied by the number of training samples.

3. Hyperparameter optimization

Turning hyperparameters is computationally expensive, and BO is utilized to search op-
timal hyperparameters for the ML model in this work. It develops a probabilistic surrogate
model to fit all currently observed samples into the target function. Next, the EI determines the
next candidate points where the optimal solution is most likely to occur [7]. Accordingly, the
unconstrained black-box optimization can be written as the following [12]

x∗ = arg min
x∈X⊂Rd

f (x) (3)

where X is a compact set of Rd with d dimensions.
The distribution over functions f (x) ∼ GP (µ (x) , k (x,x′)) is controlled by mean µ (x)

and covariance k (x,x′) function or kernel. It first put the prior on any series of sample points
X = [x1, ..., xn]T and the corresponding fitness values in the prior distribution f (X) =
[f (x1) , ..., f (xn)]T as follows

f (x)|x,Dn = N
(
µn (x) , σ2

n (x)
)
, (4)

µn (x) = µ (x) + kTK−1 (y − µ (X)) ,
σ2
n (x) = k (x,x)− kTK−1k,

(5)

where µn (.) and σ2
n (.) are the posterior mean and covariance function, respectively; k =

[k (x,x1) , ..., k (x,xn)]T is a vector of covariances.
In this work, the Matérn kernel is used in statistics and given by

k (x,x′) =
1

2(ν−1)Γ (ν)

(√
2ν ‖x− x′‖

θ

)ν

Kν

(√
2ν ‖x− x′‖

θ

)
, (6)

where ν ≥ 1
2

is the shape parameter; Γ is the Gamma function; ν = 3/2 is set up to construct
the Matérn kernel function.

In this work, the EI acquisition function is utilized to address the next point at each iteration
[14] as following.

EI (x) = E [I (x)| Dn] ,

= (f (x∗)− µn (x)) Φ
(
f(x∗)−µn(x)

σn(x)

)
+ σn (x)φ

(
f(x∗)−µn(x)

σn(x)

)
,

(7)

where Φ( ) and φ( ) denote the standard normal cumulative distribution function and probability
density function, respectively.

To truly understand BO algorithm, the single variable test function from five initial samples
is investigated. Fig. 2 shows four successive steps of the BO to obtain the near-global optimal
solution. In which, the solid black line denotes the true function, the blue dashed line stands
for the GP posterior mean. The respective infill function is shown by the solid red line, and
the cyan area represents the 95% CI. It is easily seen that the EI value tends to increase near
the minimum posterior mean, and the maximum posterior uncertainty. The new samples are
determined through the combination of measured values and uncertainties.
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Fig. 2. The expected improvement acquisition function on a toy 1D problem.

4. Data-collection

When the data size increases can guarantee a more accurate prediction model, but the com-
putational cost will also raise. So, a data-collection is developed based upon the maximum
information obtained from data.

To achieve this objective, the generating data is divided into two step: i) searching feasible
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points; ii) collecting data based on the local sampling strategy based on the feasible points.
Fig. 3 illustrates the search space and the procedure of searching feasible points and promising

Fig. 2.  Illustration of search space with feasible regions 
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Fig. 3. Illustration of search space with feasible regions.

neighborhoods.

4.1. Searching feasible points
The constrained expected improvement (EIC) is given by

EIC (x) = EICi
(x) + EICr (x) , (8)

with

EICi
(x) = (f (x∗)− µn (x)) Φ

(
f (x∗)− µn (x)

σn (x)

)
PF (x) ,

EICr (x) = σn (x)φ

(
f (x∗)− µn (x)

σn (x)

)
PF (x) ,

PF (x) =
m∏
j=1

Prj (gj (x) ≤ 0),

Prj (gj (x) ≤ 0) = Φ

(
−µgj (x)

σgj (x)

)
,

where µgj (x) and σgj (x) are the posterior mean and covariance function of the ith constraint,
respectively.

As pointed out by Haftka et al. [15], EICi
(x) indicates point where the posterior mean

of the objective function is small and low uncertainty, and the constraints are likely to be near
boundaries of feasible operation. Otherwise, EICr (x) aims to identify point which tend to be
biased towards regions that are more like to satisfy the constraints and high uncertainty of the
objective function. The EIC often fails when there is no initial feasible point in dataset.

To overcome this difficult, a multi-infill criterion is introduced in this work to achieve feasi-
ble points. This scheme helps to reduce an amount of constraint violations and to explore other
feasible regions. Its formulation is written as following:

PFC (x) = σn (x)PF (x) , (9)

5



PIC (x) = −
m∑
j=1

max
(
0, µgj (x)

)
, (10)

ISC14 (x) =
m∏
j=1

Prj (gj (x) ≤ 0). Dj, (11)

where PFC (x) is combined by the covariance function and the probability of feasibility func-
tion; PIC (x) is the penalization function corresponding to the constraint set; ISC14 (x) is the
infill sampling criterion for disconnected feasible regions [16]; D is the distance to the nearest
feasible point, and given by

D = min
xfeas

(
‖xfeas − x‖
range

)
, (12)

in which range is the lag distance at which it reaches the sill from variogram model. Interested
readers are suggested to consult Refs. [16] for more details.

According to the proposed infill criterion, if the feasible point is not found in the data,
PFC (x) and PIC (x) will be used as an alternative to obtain two infill sample points. In
this case, providing that there exists a feasible region, two feasible sample points will be iden-
tified. More specifically, the first point is located in the sparsely sampled area by maximizing
PFC (x) , so σn (x) characterizes the sample density of the objective function in the design
space. And the other point is indicated the corresponding minimum value of the total con-
straints PIC (x) . When the models fit poorly and do not have a feasible region, PIC (x) is
utilized to improve at locations violated constraints. On the contrary, once an initial feasible
point is found, Eq. (9) and Eq. (11) are employed to determine infill sample points. ISC14 (x)
aims to effectively explore other feasible regions.

4.2. Local sample points
the local sample points based on the feasible sample points and the distance criterion to

collect data. To achieve this objective, the feasible sample points is the center of local do-
mains, and then LHS technique is used to create several subsamples in the local domains. The
boundary values [xilb; xiub] of each subdomain are expressed below

[
xilb; xiub

]
=

[
xifes −

dis

2
; xifes +

dis

2

]
∩ [xlb; xub] , (13)

in which {
dis =

∣∣xifes − xclosefes

∣∣ if
∥∥xifes − xclosefes

∥∥ > ‖ξ (xub − xlb)‖,
dis = ξ (xub − xlb) otherwise,

min
xclose
fes

(∥∥(xifes − xjfes
)∥∥) j = 1, 2, ..., i− 1, i+ 1, ..., nfes,

where ξ is a coefficient chosen as 0.05 in this work, xclosefes is the closest feasible point to xifes,
nfes is the number of feasible points.

5. Results and discussion

Tuning hyperparameters is shown in Table 2. The data is divided into three subsets, i.e. 60%
for training, 20% for validation, and 20% for testing. the two different datasets are considered
in this study. The first data denoted by DS1 has 4000 samples, which is created by the LHS
technique. The other data denoted by DS2 is created by the proposed approach.
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Table 1
Data for optimization problems of truss structures.

Problem
Modulus of
elasticity
E (N/m2)

Material
density
ρ (kg/m3)

Cross-sectional
area bounds
(cm2)

Frequency
constraints
(Hz)

10-bar planar truss 6.98×1010 2770 0.645 ≤ A ≤ 50 7 ≤ f1; 15 ≤ f2; 20 ≤ f3
72-bar space truss 6.98×1010 2770 0.645 ≤ A ≤ 20 f1 = 4; 6 ≤ f3

Table 2
Specifics of the configuration space for hyperparameters.

Hyperparameter
Search space

Type
RS, BOHB, BO-TPE, BO-GP GS

No. of hidden layers [1, 9] [1, 5] Integer
No. of nodes in
hidden layers

[10, 300] [20, 50, ..., 290] Integer

Batch size [25, 26, . . . , 210] 64 Integer
Learning rate [10−7, 10−2] 0.01 Real
Learning rate decay [10−9, 10−5] 10−6 Real
Activation function [Tanh, Softplus, ReLU, Sigmoid] [ReLU, Sigmoid] Categorical

9.144m 9.144m
9.

14
4m

1 2

3 4

7 8 9 10

5 6

x

y

added mass

135

246

Fig. 4. Schematic of the planar 10-bar truss structure.

5.1. 10-bar planar truss
The first problem is 10-bar planar truss as depicted in Fig. 4. The cross-sectional areas of all

bars are assumed to be continuous design variables. A non-structural mass of 454 kg is placed
on each free node of the structure. Table 1 shows material properties, frequency constraints,
and cross-sectional area bounds. It has been previously examined by many authors [17]. The
developed paradigm finds 121 feasible sampling points and 2720 sample points in total for the
DS2 dataset. Fig. 5 shows the data distribution and the correlation of structural frequencies.
The results of the optimal hyperparameters obtained by combining the HPO method with two
data are reported in Table 3 and Fig. 6. The MSE values obtained from the DS1 are always
larger than the DS2 when using the same HPO method. Otherwise, the values of the BO-GP
is lower than those produced by the remaining methods. Table 5 reported the cross-validation
errors evaluated via MSE and RMSE for statistical outcomes including mean, standard devia-
tion, and 95% CI. The BO-GP-DS2 is the most effective model because it yields the smallest
cross-validation error.

7



0.0

0.2

0.4

0.6

0.8

1.0

f 1 0.575
***

0.463
***

10

15

20

25

f 2 0.557
***

2 3 4 5 6 7 8
f1

15

20

25

f 3

10 15 20 25
f2

15 20 25
f3

Fig. 5. Data distribution and correlation between natural frequencies of the 10-bar planar truss
structure.
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Fig. 6. The convergence rates of the hyperparameter algorithms for the 10-bar planar truss.
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Fig. 7. The weight convergence histories of the 10-bar planar truss obtained using the DE.

Table 4 presents a comparison of optimal results obtained by using different ML models.
In which, the gained cross-sectional areas are used to achieve the first three natural frequencies
by FEM. The optimization results reveal that the DS2 dataset generally outperforms while the
number of samples reaches two-third of the DS1 data. It demonstrates the effectiveness of
the suggested method. It is noticed that in this case, the results obtained from the BO-GP are
better than others, and this can be easily seen through the violated frequencies. The result
attained from the BO-GP-DS2 is of the smallest optimal weight compared with the others. The
constraint values agree well with the FEM, and close to the constraint limit. Fig. 7 shows the
weight convergence histories obtained using different combinations for this problem. Clearly,
the convergence rate of the BO-GP-DS2 shows a good agreement with the optimal solution
obtained by FEM.

5.2. 72-bar space truss
Next, 72-bar space truss as depicted in Fig. 8 is considered for the next problem. Non-

structural masses of 2270kg are applied at the upper nodes of the structure. By using the
proposed approach, 137 feasible sampling points and 3040 samples in the DS2 data are found.
The output data distribution is highlighted in Fig. 9,

The optimal hyperparameters and the convergence history of various algorithms are re-
ported in Table 6 and Fig. 10, respectively. BO-GP-DS2 yields the smallest MSE with the least
number of iterations.

The comparison of the obtained results achieved by the proposed method and other methods
is presented in Table 7. It is easily seen that the BO-GP-DS2 yields the solution closest to the
FEM solution with the relative error of the weight being small 0.28%.
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Table 3
Optimal hyperparameters of ANN obtained by different methods for the 10-bar planar truss.

Hyperparameters
GS RS BOHB BO-TPE BO-GP

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2
No. of hidden layers 2 1 3 2 1 1 5 3 1 2
No. of nodes in
hidden layers

260 290 223 258 202 210 247 280 300 300

Batch size 64 64 64 256 64 64 64 64 0.01 32
Learning rate 0.01 0.01 4.83E-04 2.90E-03 0.01 1.37E-03 1.02E-03 8.70E-03 1.00E-02 1.00E-02
Learning rate decay 1.00E-06 1.00E-06 7.84E-08 4.28E-09 1.00E-06 2.30E-07 7.77E-06 2.80E-07 1.00E-05 2.33E-09
Activation function Sigmoid ReLU Tanh Tanh Sigmoid Sigmoid ReLU ReLU Softplus Sigmoid

Table 4
Comparison of optimal results with different hyperparameter tuning methods for the 10-bar truss.

Design variable GS RS BOHB BO-TPE BO-GP
FEMAi(cm2) DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

1 18.25 40.00 28.78 37.73 29.07 39.85 36.41 39.98 40.00 30.19 35.17
2 39.84 11.28 24.60 10.45 24.41 13.08 19.38 12.97 12.76 15.85 14.70
3 39.99 40.00 35.67 31.52 39.99 40.00 34.39 40.00 40.00 39.14 35.10
4 34.28 12.62 21.07 16.75 18.23 13.77 15.24 13.78 13.85 15.83 14.69
5 0.65 3.43 0.65 4.90 0.65 0.65 11.01 0.65 4.54 0.65 0.65
6 0.65 6.56 2.12 5.38 0.65 6.62 10.16 6.77 5.25 5.31 4.56
7 39.99 28.90 24.08 25.77 35.69 31.53 17.92 31.54 19.29 24.54 23.73
8 0.65 20.07 31.76 30.37 25.06 21.16 20.18 20.97 32.13 21.64 23.67
9 14.93 10.85 2.88 20.59 0.65 9.16 15.97 9.26 11.21 11.42 12.39
10 0.69 9.70 6.49 10.42 0.65 8.64 5.55 8.58 7.41 13.44 12.42
Weight(kg) 540.14 537.49 519.63 582.50 508.51 541.15 534.22 541.07 545.72 525.39 524.40
f1(Hz) 3.3426 6.9465 5.8788 7.1813 2.9112 6.8916 6.6008 6.8885 6.9295 6.9486 6.9990
f2(Hz) 7.0663 18.1698 14.3660 18.0421 7.8575 16.6023 18.3988 16.5888 18.9451 16.2802 16.1897
f3(Hz) 14.7137 19.1679 16.8857 20.6438 15.4854 19.8400 20.7978 19.7995 19.5686 20.0006 19.9946
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Table 5
Results of MSE and RMSE for the 10-bar truss.

Data Statistics
Training Validation

MSE RMSE MSE RMSE

GS

DS1
Mean 0.1390 0.3717 0.4872 0.6976
Std 0.0215 0.0292 0.0355 0.0253
95% CI 0.124-0.154 0.351-0.393 0.462-0.513 0.68-0.716

DS2
Mean 0.1256 0.3538 0.1752 0.4171
Std 0.0146 0.0205 0.0311 0.0364
95% CI 0.115-0.136 0.339-0.369 0.153-0.197 0.391-0.443

RS

DS1
Mean 0.1836 0.4277 0.5178 0.7194
Std 0.0220 0.0261 0.0266 0.0184
95% CI 0.168-0.199 0.409-0.446 0.499-0.537 0.706-0.732

DS2
Mean 0.2026 0.4499 0.3044 0.5504
Std 0.0124 0.0137 0.0454 0.0393
95% CI 0.194-0.211 0.44-0.46 0.272-0.337 0.522-0.579

BOHB

DS1
Mean 0.2243 0.4723 0.6493 0.8056
Std 0.0343 0.0371 0.0329 0.0204
95% CI 0.2-0.249 0.446-0.499 0.626-0.673 0.791-0.82

DS2
Mean 0.3536 0.5942 0.4560 0.6746
Std 0.0298 0.0243 0.0435 0.0322
95% CI 0.332-0.375 0.577-0.612 0.425-0.487 0.652-0.698

BO-TPE

DS1
Mean 0.1364 0.3685 0.4318 0.6565
Std 0.0199 0.0268 0.0398 0.0307
95% CI 0.122-0.151 0.349-0.388 0.403-0.46 0.634-0.678

DS2
Mean 0.1952 0.4416 0.2659 0.5149
Std 0.0126 0.0143 0.0296 0.0286
95% CI 0.186-0.204 0.431-0.452 0.245-0.287 0.494-0.535

BO-GP

DS1
Mean 0.2147 0.4633 0.2964 0.5438
Std 0.0058 0.0062 0.0296 0.0269
95% CI 0.211-0.219 0.459-0.468 0.275-0.318 0.525-0.563

DS2
Mean 0.1055 0.3239 0.1245 0.3506
Std 0.0161 0.0252 0.0300 0.0421
95% CI 0.094-0.12 0.31-0.34 0.103-0.146 0.32-0.38

Table 6
Optimal hyperparameters of ANN from each method for the 72-bar space truss.

Hyperparameters
GS RS BOHB BO-TPE BO-GP

DS2 DS1 DS2
No. of hidden layers 2 7 1 2 2 1
No. of nodes in hidden layers 260 147 203 225 300 300
Batch size 64 32 64 128 128 32
Learning rate 0.01 1.62E-03 1.56E-03 6.70E-04 2.17E-04 1.99E-04
Learning rate decay 1.00E-06 1.12E-08 1.48E-07 1.53E-08 1.01E-08 1.00E-09
Activation function Sigmoid Sigmoid Sigmoid ReLU ReLU ReLU
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Fig. 9. Data distribution and correlation between the natural frequencies of the 72-bar space
truss structure.

5.3. 52-bar dome truss
In the last example, design optimization of dome truss with geometric nonlinearity is con-

sidered in dealing with computationally expensive problems. The 52-bar dome truss has been
previously examined by Saka [18] described in Fig. 11. The Young’s modulus and material
density are E = 21000kN/cm2 and ρ = 7.85N/cm3, respectively. The external force 150kN
in the z-axis direction subject to nodes 6-13. The vertical displacements of all free nodes are
restricted to 10mm.
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Table 7
Comparison of optimal results with different hyperparameter tuning methods for the 72-bar
space truss.

Design variable GS RS BOHB BO-TPE BO-GP
FEM

Ai(cm2) DS2 DS1 DS2
1 4.406 0.645 0.648 3.529 0.645 3.132 3.861
2 7.623 7.705 9.336 8.331 6.869 7.815 7.828
3 0.645 0.645 0.645 0.645 0.645 0.645 0.704
4 0.645 0.645 0.645 0.645 0.645 0.645 0.647
5 8.527 7.714 8.388 6.238 8.853 10.218 7.281
6 8.569 8.473 8.436 8.384 8.812 7.431 8.159
7 0.645 0.645 0.645 0.645 0.645 0.645 0.658
8 0.645 0.645 0.645 0.645 0.645 0.645 0.645
9 12.400 11.506 14.293 10.498 17.669 13.886 13.602
10 7.890 8.381 9.241 7.669 7.829 8.929 8.136
11 0.645 0.645 0.645 0.645 0.645 0.645 0.663
12 0.645 0.645 0.645 0.645 0.645 0.645 0.722
13 16.694 19.847 20.000 20.000 19.967 15.136 16.528
14 8.739 8.697 7.535 7.208 9.158 7.452 7.668
15 0.645 0.645 0.645 0.645 0.645 0.645 0.674
16 0.645 0.645 0.645 0.645 0.645 0.645 0.658
Weight(kg) 333.695 333.071 348.933 321.432 341.168 325.257 324.340
f1(Hz) 4.042 3.609 3.701 3.928 3.725 4.001 3.997
f3(Hz) 6.091 5.113 5.138 5.972 5.150 5.972 6.001
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Fig. 10. The convergence rates of the hyperparameter tuning algorithms for the 72-bar space
truss.
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Fig. 11. The 52-bar dome truss.
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Fig. 12. The convergence rates of the hyperparameter algorithms for the 52-bar dome truss.

The suggested data-collection algorithm finds 71 feasible samples and 1570 samples for the
DS2 dataset. The optimal hyperparameters and the convergence rates of various algorithms are
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provided in Table 8 and Fig. 12, respectively. It also indicates that the BO-GP-DS2 model
gives the smallest error.

Table 8
Optimal hyperparameters of ANN from each method for the dome structure with 52 members.

Hyperparameter
GS RS BOHB BO-TPE BO-GP

DS2 DS1 DS2
No. of hidden layers 1 2 2 3 1 1
No. of nodes in
hidden layers

170 38 204 218 300 151

Batch size 64 64 64 128 32 32
Learning rate 0.01 1.62E-03 2.17E-03 5.23E-03 0.01 5.40E-03
Learning rate decay 1.00E-06 1.00E-05 9.23E-08 2.89E-09 4.04E-07 1.00E-05
Activation function Sigmoid ReLU ReLU Softplus Softplus ReLU

As the previously indicated example, Table 10 summarizes the optimal results obtained by
some of the above networks for comparison. First, as can be seen from Table 10, the constraints
obtained on DS2 are not violated, whereas the fourth constraint in DS1 is violated (19.334mm
≥ 10mm). The optimal solution from BO-GP-DS2 is very close to FEM with a small prediction
error.

The weight convergence histories obtained using different models for this example are given
in Fig. 13. The BO-GP-DS2 shows its accuracy and effectiveness in significantly remarkably
the computational cost.
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Fig. 13. The weight convergence histories of the 120-bar dome truss obtained using the DE.

15



Table 9
Comparison of computational time for the dome structure with 52 members.

Times(s)
GS RS BOHB BO-TPE BO-GP

FEM
DS2 DS1 DS2

Data generation 3194 3194 3194 3194 5067 3194
68408Training 25916 34264 16668 29880 26512 27488

Optimization 19 17 15 12 20 14
Total 29129 37475 19877 33086 31599 30696 68408

Table 10
Comparison of optimal results with different hyperparameter tuning methods for the dome
structure with 52 members.

Design variable GS RS BOHB BO-TPE BO-GP
FEM Saka [18]

Ai(cm2) DS2 DS1 DS2
1 22.086 2.000 2.000 2.000 2.000 2 2.000 81.820
2 2.001 2.000 2.000 2.000 2.000 2 2.000 22.410
3 21.049 21.536 2.000 2.000 2.000 2 2.000 33.580
4 2.000 2.000 2.000 2.000 2.000 2 2.000 14.450
5 28.933 23.369 25.183 35.250 12.083 16.753 16.672 10.640
6 28.277 32.197 27.886 31.560 10.460 17.869 17.585 25.160
7 2.000 2.000 2.000 2.000 7.385 2.3013 2.519 2.000
8 2.000 2.000 2.000 2.000 2.000 2 2.000 2.000
Weight(kg) 3847.422 3443.526 2976.287 3625.623 1961.140 2142.41 2141.870 5161
w1(mm) 1.104 0.171 0.646 1.046 3.907 1.206 1.326 -2.772
w2(mm) 0.923 0.056 0.466 0.915 0.826 0.742 0.719 -2.826
w6(mm) 6.798 7.206 7.252 5.815 7.735 10 10 13.045
w7(mm) 5.723 5.866 6.182 5.039 19.334 9.648 10 9.491

6. Conclusions

In this work, an new multi-infill criterion has been successfully developed for handling
constraints and providing maximum information about feasible samples. The ML model with
optimized tuning hyperparameters is utilized to optimize truss structures with linear and non-
linear responses. The attained results indicated that the combination of BO with data-collection
strategy is reliable enough to handle structural optimization problems.
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