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Abstract
In this paper, an efficient deep unsupervised learning (DUL)-based framework is proposed to directly perform the design 
optimization of truss structures under multiple constraints for the first time. Herein, the members’ cross-sectional areas are 
parameterized using a deep neural network (DNN) with the middle spatial coordinates of truss elements as input data. The 
parameters of the network, including weights and biases, are regarded as decision variables of the structural optimization 
problem, instead of the member’s cross-sectional areas as those of traditional optimization algorithms. A new loss func-
tion of the network model is constructed with the aim of minimizing the total structure weight so that all constraints of the 
optimization problem via unsupervised learning are satisfied. To achieve the optimal parameters, the proposed model is 
trained to minimize the loss function by a combination of the standard gradient optimizer and backpropagation algorithm. 
As soon as the learning process ends, the optimum weight of truss structures is indicated without utilizing any other time-
consuming metaheuristic algorithms. Several illustrative examples are investigated to demonstrate the efficiency of the 
proposed framework in requiring much lower computational cost against other conventional methods, yet still providing 
high-quality optimal solutions.

Keywords  Unsupervised learning · Deep neural network · Loss function · Truss optimization

1  Introduction

Size optimization of truss structures has attracted the consid-
erable attention of many scholars during the last decades. As 
known, this problem often minimizes the structural weight 
to mandatorily satisfy multiple constraints. As indicated 
in Refs. [1–3], the constraints of such problems are non-
convex and highly nonlinear functions. There have been a 
variety of algorithms proposed for solving this issue, and 
they are usually categorized into two types: gradient and 
gradient-free. The first one relies on the gradient informa-
tion to search optimum solutions. For instance, an optimality 
criterion was developed by Khot et al. [4, 5] to minimize the 
weight of the truss structure. El-Sayed et al. [6] described a 
combining model using linear and nonlinear goal program-
ming. Besides, the optimality criteria integrated with the 
nonlinear analysis technique were delivered by Saka and 
Ulker [7]. Although these methods have achieved certain 
successes, they often encounter several challenges as indi-
cated in Ref. [8]. In specific, it can fail due to the unavail-
able gradient information of the objective and constraints 
functions. Among different approaches, evolutionary and 
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population-based metaheuristic algorithms have been 
extensively applied to solve optimization problems for truss 
structures, such as improved differential evolution (IDE) 
[2], firefly algorithm (FA) [9], adaptive hybrid evolutionary 
FA (AHEFA) [10], particle swarm algorithm (PSO) [11], 
democratic PSO (DPSO) [12], genetic algorithms (GAs) 
[13], hybrid optimality criterion and genetic algorithm (OC-
GA) [14], modified coyote optimization algorithm (MCOA) 
[15], harmony search (HS) [16], evolutionary ant colony 
optimization (EACO) [17], improved grey wolf optimizer 
(IGWO) [18], efficient HS (EHS) [19], and balancing com-
posite motion [20], etc. Despite these algorithms can achieve 
near-global optimum solutions, they also suffer from several 
drawbacks, such as high computational cost, slow conver-
gence speed, and many turning parameters [21].

Over the past decade, machine learning (ML) has demon-
strated to be effective and promising in many fields to assist 
decision-making in image recognition [22], self-driving sys-
tems [23], medical diagnoses [24], financial services [25], 
structural analysis [26, 27], to name a few. Indeed, it has dis-
played salient advantages over conventional methods in han-
dling complex practical problems that do not have a closed-
form expression. Recently, DNN which is one of the most 
widely used ML models has attracted remarkable attention 
in computational mechanics, for example, structural analy-
sis [28, 29], structural health monitoring [30–33], materials 
sciences [34–36], and structural optimization is no excep-
tion. Since the 1990s, a neural network (NN) combined with 
other algorithms was developed for optimization of truss 
structures [37–42]. More recently, Mai et al. [43] proposed 
an integrated model of DNN and differential evolution (DE) 
algorithm for optimization of truss structures with geometri-
cally nonlinear behavior. The data-driven ML approach was 
introduced by Long [44] for solving structural optimization 
problems. In addition, DNN integrated with the traditional 
algorithms for tackling multi-objective optimization prob-
lems [45, 46]. Besides, it has also been successfully applied 
to solve topology optimization problems of structures. For 
instance, Li et al. [47] developed an integrated pre-trained 
network to replace the iterative optimization for designing 
heat conduction structures. A surrogate model based on NN 
was proposed by White et al. [48] to perform optimization 
of macroscale elastic structures. Also, Deng and Albert [49] 
used DNN to approximate an implicit function of the level 
set for topology optimization. To decrease computational 
cost, Abueidda et al. [50] employed a convolutional neural 
network (CNN) model to optimize structures with geometric 
nonlinearity. Despite the remarkable success achieved in this 
area, it is worth mentioning that most of the above studies 
use a DNN as a surrogate model, and employ supervised 
learning to construct the model. The above approaches have 
several disadvantages, making them inefficient such as: (i) 
they require a time-consuming effort due to the numerical 

simulation for collecting data of training process; (ii) it is 
difficult to estimate the suitable training data size, and (iii) 
they depend strongly on the quality and quantity of data 
to build the high-accuracy data-driven predictable model. 
To circumvent these challenges, physics-informed machine 
learning frameworks, which integrated the governing phys-
ics law into the unsupervised learning process, have obtained 
increasing attention and successfully applied in many tasks, 
such as structural analysis [51–53], solving partial differen-
tial equations (PDEs) [54, 55], and fluid mechanics [56, 57]. 
For the structural optimization problem, Chandrasekhar and 
Suresh [58] firstly proposed a direct topology optimization 
paradigm using unsupervised learning NN. However, in this 
context, it remains a bottleneck in the computational effort 
that a part of the sensitivity analysis is performed by direct 
differentiation. Furthermore, to the best of our knowledge, 
a multilayer direct DNN model has still not been yet utilized 
for optimization of truss structure thus far.

As another alternative effective approach for the truss 
optimization field, this study aims to firstly propose an effi-
cient DNN-based framework using unsupervised learning 
for optimization of truss structures under multiple con-
straints. Our work is different from most existing publica-
tions based on ML in a number of ways. In the proposed 
framework, the training data of the network is a set of the 
central spatial coordinates of all truss members which can 
be easily collected from the connectivity information of the 
structure without any numerical simulations, independent 
sampling techniques, as well as its small size. In addition, 
the design variables of truss optimization are the weights 
and biases of the DNN, instead of the cross-sectional areas 
of truss members. Therein, the sensitivity of loss function to 
parameters can be easily estimated by an automatic differen-
tiation framework JAX [59] and backpropagation algorithm. 
And finally, the FEA is only required to assist in building 
the loss function while optimizer and backpropagation algo-
rithm allow the network to directly participate in the process 
of structure optimization design. According to that, the opti-
mum weight of truss structures can be indicated as soon as 
the training process ends with low computational overhead 
and without utilizing any other algorithms. The performance 
and applicability of the proposed approach are demonstrated 
through several benchmark truss optimization examples 
under various constraints. The outcomes of the proposed 
DUL are compared with conventional algorithms to evalu-
ate its efficiency and reliability. The experimental results 
showed that DUL is able to dramatically reduce the compu-
tational cost, yet still yield high-quality optimal solutions.

The rest of the paper is organized as follows. The formu-
lation of the size optimization problem of truss structures 
with multiple constraints is given in Sect. 2. Afterward, the 
efficient DNN-based structural optimization paradigm is 
presented in Sect. 3. Next, several numerical examples are 
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investigated to demonstrate the efficiency of the proposed 
method in Sect. 4. Finally, conclusions and challenges are 
outlined in Sect. 5.

2 � Sizing optimization

For the size optimization of truss structures, the goal is to 
minimize the structural mass while still satisfying all design 
constraints. In which, the cross-sectional areas of truss mem-
bers are considered as continuous design variables and pre-
defined in a feasible region. The mathematical formulation 
of this problem can be represented as follows

where A is the design variable vector; Ak is the cross-section 
area of the kth member; W(.) is the mass of the truss struc-
ture; Li and �i are the length and material density of the ith 
member; gj is the jth constraint function; qj denotes the jth 
displacement, stress or frequency; [ qj ] is the jth allowable 
displacement, stress or frequency; m and n are the number 
of members and constraints, respectively; Alow

k
 and Aup

k
 are 

the lower and upper bound of Ak , respectively.
To solve the above optimization problem, a penalty func-

tion is used to convert the constrained optimization problem 
into an unconstrained optimization one [2, 10, 60]. Thus, Eq. 
(1) can be rewritten as follows

where c is the sum of the violated constraints of the design 
problem; �1 and �2 are parameters whose values control the 
exploration and exploitation rates of the design space.

In this work, the following two types of structural opti-
mization problems are addressed: (1) frequency constraints 
only, and (2) displacement and stress constraints. For the 
first case, according to Kaveh [61, 62], �1 is set to 1 for a 
better control on other parameters. Note that the first part 
of Eq. (2) is a penalty function. And its value increases as 
the exponent �2 increases for infeasible designs. Hence, the 
coefficient �2 is set in a way that the penalty decreases. As 
mentioned by Kaveh [62], this coefficient directly effects 
the exploration of the algorithm, and its value varies from 
1.5 to 3 of the search process. In this study, the value of �2 is 
set to 1.5 at the first epoch and linearly increased by 0.05 in 
each epoch until it achieves 3 [10, 12] in solving optimiza-
tion problem under frequency constraints. For the remaining 

(1)

Minimize W(�) =
m
∑

i=1

�iAiLi,

subjected to gj(�) =
qj

[q]j
− 1 ≤ 0, j = 1, 2, … , n,

Alow
k

≤ A
k
≤ A

up

k
, k = 1, 2, … , m,

(2)
Minimize f (�) =

�

1 + �1c
��2 W(�),

c =
n
∑

j=1

max
�

0, gj(�)
�

,

case, a self-adaptive parameters scheme which is proposed 
by Sonmez [63] and Hasancebi [64] is utilized for the rest of 
experiments. Contrary to the first case, �2 is set to 1, while 
the coefficient �1 is automatically adjust according to the 
feedback from previous solution, as expressed below

in which �(t)
1

 and �(t−1)
1

 denote the penalty coefficients at 
epochs t and (t − 1) , respectively. �1 is set to 1 at the begin-
ning of the epoch. � is the learning parameter of �(t)

1
 , and it 

is determined by the following equation [63, 64]

where n is the total number of constraints.

3 � Deep unsupervised learning‑based 
optimization framework

The unconstrained optimization problem presented in Eq. (2) 
is usually solved by population-based search algorithms as 
indicated in Introduction. However, they often require a large 
number of FEA runs to achieve a good solution. In this section, 
an alternative approach based on DNN is suggested to directly 
perform optimization of truss structures with lowest computa-
tional cost. The overall flowchart of the proposed framework is 
illustrated in Fig. 1. Here, the weights and biases of the network 
��� are design variables. In the context of this paradigm, the ini-
tial weight and bias values are randomly chosen according to 
a normal distribution on interval [ −1, 1 ] for the network setup. 
The middle spatial coordinates of truss members are treated as 
the input data, while the cross-sectional areas are represented 
through parameters and defined as the outputs of the network 
�̂ obtained by the feedforward phase. Then, the loss function 
including the objective and constraints is established based on 
these outputs, and the responses of structures are attained from 
FEA. JAX, backpropagation, and optimizer are employed to 
estimate the sensitivity of the loss function to the parameters. 
To carry out the training, all of the above operations are going 
on repetitively until the loss function value reaches the mini-
mum corresponding to the optimum weight of truss structures. 
In general, the proposed approach consists of the following 
three major components: (i) training data; (ii) DNN, and (iii) 
the loss function. They are described in detail in the following 
three subsections.

3.1 � Training data

It should be noted that this work relies on unsupervised learn-
ing, where the model only has input data, and no corresponding 

(3)�
(t)

1
=

{

(1∕�)�
(t−1)

1
if f (t−1) is feasible,

� �
(t−1)

1
if f (t−1) is infeasible,

(4)𝜅 = 1 +
1

n
> 1.01,
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output values are required. Furthermore, the input data only 
contains the information to describe the problem, such as geo-
metric, material, loads, boundary conditions, and so on. In this 
work, a set of middle spatial coordinates ( xi , yi , zi ) of truss ele-
ments is selected as training data. Clearly, they are simple and 
can be easily obtained from known geometry of the structure. 
Additionally, its size is small (d × 2) and (d × 3) for planar and 
space truss structures, respectively. Here d denotes the number 
of truss members, while 2 or 3 implies the number of spatial 
coordinates for 2- or 3-dimensional truss corresponding to the 
number of neurons in the input layer. Hence, it helps to reduce 
the complexity of NN as well as improve the convergence speed.

3.2 � Deep neural network

The DNN, which is one of the ML models, is a set of math-
ematical relationships between the inputs and outputs through 
a training phase that mimics the way of human brain activities 
[41, 65]. For illustration, a fully connected DNN with depth 
L is depicted in Fig. 2. Therein, the first layer is known as the 
input layer which consists of three neurons corresponding with 
the spatial coordinates (x, y, z). The middle layers are referred 
to as hidden layers. Finally, the last layer is called the output 
layer with one neuron which corresponds to the predicted cross-
sectional area ( Â ). And meanwhile, the number of hidden layers 
and hidden neurons depend on the complexity of the application. 

Training

Â(x, y, z, θθ)

θθ*A*

Deep Neural network

Yes

No

argmin

xi

yi
zi

Âi

= 1 + ε c W( )

Objective 
W(Â) 

Constraints
gj(Â) 

Feedforward

Backpropagation

Training data

FEA

Loss function

Fig. 1   Flowchart of the DUL-based framework for design optimization

Fig. 2   Architecture of a fully 
connected DNN

Âi

NeuronBackpropagation

zi

xi

yi

Input layer Output layerHidden layer

Feedforward
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Furthermore, the units of the present layer are connected to all 
units in the previous layer via weights � and biases �.

In order to train the network, the feedforward and backprop-
agation algorithms will be employed to tune the parameters. 
Specifically, in the feedforward process, a mapping from input 
to output nodes can be expressed as �̂ : ℝ3

→ ℝ . The data is 
transmitted from the first layer to the last layer by the transforma-
tions. Hence, the relation between the input and output of the kth 
hidden layer is expressed as

where f(.) is the activation function, which allows for learn-
ing a complex relationship between input and output. There 
are several common choices, including ReLU, LeakyReLU, 
Sigmoid, Softmax, and Tanh. �̂h denotes the output of the hth 
hidden layer. And, the output of each layer can be rewritten 
as follows

where mh is the number of neurons in the hth hidden layer.
In order to achieve the optimal parameters, the training is 

carried out by minimizing the loss function L . There are many 
available optimizers to train the DNN model. Adam optimizer 
is one of the most common ones, so it is utilized to perform the 
training task. Accordingly, the network parameters at timestep 
t are updated as follows

where ��� is the parameter vector including weights and biases 
of the network; � is the learning rate; � is a constant added to 
maintain numerical stability; �̂t and �̂t are the bias-corrected 
first and second raw moment, and they are given by

in which �1, �2 ∈ [0, 1) are the hyper-parameters to control 
�t and �t which are two exponential decay rates at timestep 
t as follows

(5)
�̂h = �hT �̂h−1 + �h,

�̂h = f
(

�̂h
)

,

(6)

input layer ∶ �̂0 =
[

x, y, z
]

∈ ℝ
3,

hidden layers ∶ �̂h = f
(

�hT �̂h−1 + �h
)

∈ ℝ
mh ,

for 1 ≤ h ≤ (L − 1),

output layer ∶ ôL = f
(

�LT �̂L−1 + �L
)

= Â ∈ ℝ,

(7)𝜃𝜃𝜃t = 𝜃𝜃𝜃t−1 − 𝜂
�̂t

√

�̂t + 𝜀
,

(8)�̂t =
�t

1 − 𝛽 t
1

,

(9)�̂t =
�t

1 − 𝛽 t
2

,

(10)�t =�1�t−1 +
(

1 − �1
)

.∇L
(

���t−1
)

,

Here, ∇L
(

���t−1
)

 is the first gradient of the loss function with 
respect to the parameters at timestep (t − 1) . In this work, 
Adam optimizer with its default parameters as suggested by 
Kingma and Ba [66] was used to train the model. For more 
details, interested readers are suggested to refer to Ref. [66].

3.3 � Loss function

It should be noted that the proposed approach is designed 
based on unsupervised learning. Consequently, the predicted 
cross-sectional area value Âi(𝜃𝜃𝜃) is expressed by the param-
eters of the DNN. The loss function is defined as the penalty 
function in Eq. (2). It includes the mass and responses of 
structure obtained by FEA corresponding to the predicted 
cross-sectional areas �̂(𝜃𝜃𝜃) , as expressed below

It is easily seen that instead of solving the optimization prob-
lem in Eq. (1), we now turn to minimize the loss function 
by training to find the optimal parameters �∗�∗�∗ of the network.

Once the network is trained, the optimum cross-sectional 
areas of truss members are found corresponding to the opti-
mal parameters. Note that the derivatives of the loss function 
with respect to the parameters �i obtained by applying the 
chain rule to Eq. (12) is given by

From Eq. (14), it can be observed that the term 𝜕Âe

𝜕𝜃i
 will be 

calculated automatically by the backpropagation algorithm, 
and the other term 𝜕L

𝜕Âe

 must be provided as follows

Here, the derivative of the sum of the violated constraints 
𝜕c

𝜕Âe

 is defined as

with

(11)�t =�2�t−1 +
(

1 − �2
)

.∇L
(

���t−1
)

,

(12)L(𝜃𝜃𝜃) =
(

1 + 𝜀1c
)𝜀2 W

(

�̂(𝜃𝜃𝜃)
)

.

(13)���∗ = argmin
���

(L(���) ).

(14)
𝜕L

𝜕𝜃i
=

m
∑

e=1

𝜕L

𝜕Âe

𝜕Âe

𝜕𝜃i
.

(15)
𝜕L

𝜕Âe

= 𝜀2
(

1 + 𝜀1c
)𝜀2−1 W

𝜕c

𝜕Âe

+
(

1 + 𝜀1c
)𝜀2 𝜕W

𝜕Âe

.

(16)
𝜕c

𝜕Âe

=

n
∑

j=1

𝜕

𝜕Âe

max
(

0, gj
)

,

(17)
𝜕

𝜕Âe

max
(

0, gj
)

=

{

0 gj ≤ 0,
𝜕gj

𝜕Âe

gj > 0,
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in which gj is the jth constraint function. In this work, three 
types of constraints are considered including displacement, 
stress, and frequency. As pointed out by Camarda [67] and 
Iranmanesh [42], the gradient of these constraints with 
respect to the area of the members is given by

where � is the displacement vector; � is the global stiffness 
matrix; �e stands for the stress of the member; � is the geo-
metric transformation matrix; �e denotes the displacement 
vector of the element; �f  and ���f  are the angular frequency 
and the eigenvalue vector, respectively; M stands for the 
mass matrix. As can be seen, the method for computing the 
sensitivity of constraints can be directly determined from 

(18)
��

�Ae

= −�
−1 ��

�Ae

�,

(19)
𝜕𝜎𝜎𝜎e

𝜕Âe

=
E

Le
�
𝜕�e

𝜕Âe

,

(20)
𝜕𝜔f

𝜕Âe

=𝜙𝜙𝜙T
f

𝜕�

𝜕Âe

𝜙𝜙𝜙
f
− 𝜔2

f
𝜙𝜙𝜙T
f

𝜕�

𝜕Âe

𝜙𝜙𝜙
f
,

Eqs. (16)–(20), but it takes effort to achieve success. To 
circumvent this, the automatic differentiation tool JAX is 
utilized in this work for accelerated performance [59]. It 
has been successfully applied to the topology optimization 
problem [68]. In contrast, the gradient of the objective func-
tion is easily defined as follows

where W is the structural weight; ng denotes the total num-
ber of member groups, and �e stands for the density of 
members.

According to the afore-presented issue, the gradient of the 
loss function is easily estimated. Hence, the parameters of 
the network are tuned for each epoch of the training process. 
The main steps of the proposed approach are summarized 
in Algorithm 1. It is worth mentioning that this approach is 
based on the gradient descent algorithm and the optimiza-
tion problem is a nonconvex one [2, 3]. Therefore, we need 
to pay attention to the sensitivity of the initial parameters as 
well as to the possibility of being stuck in local minima and 
saddle points.

(21)
𝜕W

𝜕Âe

= 𝜌e

ng
∑

k=1

Lk,
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4 � Numerical experiments

In this section, several well-known benchmark problems are 
explored to justify the efficiency of the proposed approach, 
and obtained results are compared with the DE and other 
metaheuristic algorithms done by previous works. Depend-
ing on the constraints’ characteristics, the examples are 
divided into two categories: the first one is made up of four 
cases of natural frequency constraints, while the remain-
ing one includes other three problems with displacement 
and stress constraints. In all investigated examples, two and 
three neurons are used in the input layer corresponding to 2D 
and 3D problems, and one neuron with regard to members’ 
cross-sectional area is utilized for the output layer. Besides, 

the trial-error and grid search (GS) methods [69] are applied 
to estimate the architecture of the network. In addition, the 
Adam optimizer (learning rate 0.01, �1=0.9, �2=0.999) [66] 
is adopted for training the model. LeakyReLU and Softmax 
are activation functions for the hidden and output layer, 
respectively. Otherwise, the learning process of the network 
is terminated when either the norm of the gradient value is 
less than 0.01 or the maximum number of epoch reaches 
[70]. Note that for the present method, the number of epochs 
is also the number of FEAs or loss function evaluations.

For DE algorithm, the parameters are set as follows: pop-
ulation size 20, the maximum number of FEAs 3000, mutant 
factor F = 0.8 , crossover control parameter Cr = 0.9, and 
the value of threshold 10−6 [2, 10, 60]. The best design is 
determined by 30 independent runs of each problem, dealing 
with the stochastic nature of the DE algorithm. To get a fair 
comparison between the different methods, all the tests are 
implemented in the library of Tensorflow and using Python 
software. And all experiments are performed on a desktop 
computer with Core i5-8500 CPU of @3.0 GHz and 16 GB 
RAM.

4.1 � Frequency constraints

4.1.1 � 10‑bar planar truss

The first numerical example is a 10-bar planar truss struc-
ture, as illustrated in Fig. 3. The data for the design, includ-
ing Young’s modulus, density, design variable bounds, and 
natural frequency constraints, are summarized in Table 1. 

9.144m 9.144m

9.
14

4m

1 2

3 4

7 8 9 10

5 6

x

y

added mass

135

246

Fig. 3   10-bar planar truss problem

Table 1   Material properties, 
constraints, upper and lower 
bounds on area variables

Test problems Young’s modu-
lus E (N/m2)

Material density 
� (kg/m3)

Natural frequency (Hz) Cross-sectional 
area limits 
(cm2)

10-bar planar truss 6.98 × 1010 2770 7 ≤ f
1
 ; 15 ≤ f

2
; 0.645 ≤ Ai ≤ 50

20 ≤ f
3

72-bar space truss 6.98 × 1010 2770 f
1
 = 4; 6 ≤ f

3
0.645 ≤ Ai ≤ 20

120-bar dome truss 2.1 × 1011 7971.81 9 ≤ f
1
 ; 11 ≤ f

2
1 ≤ Ai ≤ 129.3

200-bar planar truss 2.1 × 1011 7860 5 ≤ f
1
 ; 10 ≤ f

2
; 0.1 ≤ Ai ≤ 25

15 ≤ f
3

Table 2   MSE of the optimal 
cross-sectional areas for the 
10-bar planar truss with various 
optimizers and activation 
functions

Activation Optimizers

functions Adam Adamw Adadelta Adagrad Adamax SGD ASGD RMSprop

Softmax 0.0466 0.0610 129.7283 20.4489 6.2696 87.8649 204.8981 7.3892
Softplus 5.7412 5.4541 45.3525 6.0972 5.7074 6.2923 31.0242 22.5772
Tanh 0.0918 0.0529 30.8862 7.7082 0.1728 9.0307 19.7944 7.7507
Sigmoid 6.5302 6.4860 111.7375 6.8888 5.8379 22.6053 99.6836 14.6526
ReLU 0.1864 7.2302 33.8680 6.6109 6.6240 6.2492 19.6532 13.2780
LeakyReLU 0.0247 0.0332 33.3514 6.3805 7.4386 6.3581 20.6535 11.5345
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A lumped mass of 454 kg is set at four free nodes. This 
benchmark problem has been previously analyzed by many 
researchers using metaheuristic algorithms, such as Gomes 
[11], Kaveh [12], Ho [2], and Lieu [10], etc. For the first 
case, a DNN with five hidden layers is chosen to build the 
model and each hidden layer contains 20 neurons. The model 
performs training with the maximum number of FEAs equal 
to 1,000.

With the above architecture, a survey is conducted to 
investigate the effect of different combinations of optimizers 
and activation functions on the performance of the network. 
Herein, mean square error (MSE) of the optimal solution 
between the DUL and DE is employed as the standard tool 
to measure. Table 2 summarizes the obtained MSE results. 
It can be seen that Adam and Adadelta are the best and 
worst optimizers, respectively. Therein, the combination of 
Adam and LeakyReLU provides the lowest MSE (0.0247). 
In addition, Table 3 shows the errors of the objective and 
constraints compared with the DE when Adam is combined 
with various activation functions. It is clear that LeakyReLU 
is the lowest error value and less than 0.2% . Consequently, 

Adam and LeakyReLU are respectively chosen as optimizer 
and activation function for the training network in this study.

Table 4 shows a comparison of optimal results gained 
by this work and other researchers. It can be observed that 
the optimum weight acquired by DUL (524.719 kg) is very 
close to DE (524.463 kg), AHEFA (524.451 kg), and IDE 
(524.462 kg). However, the DUL outperforms other well-
known existing algorithms available in the literature. More 
specifically, it requires the least number of structural analy-
ses with only 1000 analyses, while the metaheuristic algo-
rithms require a larger number of FEA calls, e.g. AHEFA 
[10] with 5860 analyses, DE with 9480 analyses. This can 
easily be explained by the fact that the training algorithm 
is used as a gradient-based optimization of stochastic loss 
function, so the number of function evaluations will be dras-
tically reduced. All frequency constraints are satisfied with 
the small relative errors. In addition, the weight error against 
to the AHEFA is small (0.051%), which is only higher than 
DE (0.002%) and IDE (0.002%).

The weight convergence histories of the DUL and DE are 
depicted in Fig. 4. As observed, the proposed DUL model’s 

Table 3   Standard errors ( % ) of 
weight and frequencies for the 
10-bar planar truss with various 
activation functions using Adam

Error ( %) Activation functions

Softmax Softplus Tanh Sigmoid ReLU LeakyReLU

Weight 0.3489 1.7766 0.3596 1.5482 0.2001 0.0487
f
1

0.0281 0.0028 0.0432 0.0398 0.0196 0.0014
f
2

2.6639 11.2745 3.1186 11.2354 0.8680 0.1062
f
3

0.1181 0.1950 0.0029 0.0995 0.0949 0.0380

Table 4   Optimization results 
obtained for the 10-bar planar 
truss with frequency constraints

Bold used to emphasize the best minimum weight design

Design variables PSO FA DPSO OC-GA IDE AHEFA This study

Ai (cm2) [11] [9] [12] [14] [2] [10] DE DUL

A
1

37.712 36.198 35.944 37.284 35.060 35.171 35.288 35.106
A
2

9.959 14.030 15.530 9.445 14.685 14.720 14.577 14.826
A
3

40.265 34.754 35.285 35.051 35.068 35.107 35.087 35.227
A
4

16.788 14.900 15.385 19.262 14.809 14.698 14.782 14.723
A
5

11.576 0.654 0.648 2.783 0.645 0.645 0.645 0.654
A
6

3.955 4.672 4.583 5.450 4.558 4.559 4.561 4.568
A
7

25.308 23.467 23.610 19.041 23.527 23.733 23.510 23.712
A
8

21.613 25.508 23.599 27.939 23.799 23.679 23.972 23.712
A
9

11.576 12.707 13.135 14.950 12.503 12.398 12.462 12.371
A
10

11.186 12.351 12.357 10.361 12.459 12.423 12.266 12.371
Best weight (kg) 537.980 531.280 532.390 535.730 524.462 524.451 524.463 524.719
Weight error (%) 2.580 1.302 1.514 2.151 0.002 – 0.002 0.051
f
1
 (Hz) 7.000 7.000 7.000 7.001 7.000 7.000 7.000 7.000

f
2
 (Hz) 17.786 16.164 16.187 17.030 16.185 16.192 16.196 16.213

f
3
 (Hz) 20.000 20.003 20.000 20.156 20.000 20.000 20.000 20.008

Number of FEAs – 5000 3000 12,000 6260 5860 9480 1000
Total times (s) – – – – – – 72.134 29.784
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learning curve shows that the weight of structure rapidly 
decreases at the beginning, tends to be stable around 400 
analyses, and reaches the optimal solution only through 
1000 analyses. On the contrary, the traditional DE converges 
much slower and requires more than 9 times the number of 
analyses (9480 analyses) compared to our model. In addi-
tion, this work only requires one run time with 29.784 s, 
while DE approximately takes 72 s to complete 30 independ-
ent optimization runs to get as accurate results as possible. 
Therefore, our approach helps to save more than a half of 
the computational cost.

4.1.2 � 72‑bar space truss

Next, a 72-bar space truss structure, as shown in Fig. 5, is 
investigated as the second example for size optimization. 
Members’ cross-sectional areas are classified into 16 catego-
ries, which corresponds to the 16 design variables as listed 
in Table 5. A lumped mass of 2270 kg is mounted at each 
of the four upper nodes of the structure. The data concern-
ing the design of this example is contained in Table 1. This 
structure has been formally investigated by various research-
ers [2, 9–11, 60]. A 6-layer network (3-20-20-20-20-1) is 
trained with maximum epochs of 3000.

A comparison of the optimal results attained by the pro-
posed approach and previous works is illustrated in Table 5. 
It can be observed that the optimal weight (325.161 kg) 
found by the DUL is close to AHEFA (324.237 kg) with the 
error less than 0.3% , and smaller than the other studies (PSO 
[11]: 328.823 kg; FA [9]: 328.334 kg; and HALC-PSO [60]: 

Fig. 4   The weight convergence 
histories obtained using the 
DUL and DE for the 10-bar 
planar truss
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Table 5   Comparison of the 
obtained results for the 72-bar 
space truss with frequency 
constraints

Bold used to emphasize the best minimum weight design

Design variables PSO FA HALC-PSO IDE AHEFA This study

Ai (cm2) [11] [9] [60] [2] [10] DE DUL

A
1
–A

4
2.987 3.6803 3.3437 3.5863 3.5612 3.6191 3.8710

A
5
–A

12
7.849 7.6808 7.8688 7.8278 7.8736 7.8203 7.8864

A
13

–A
16

0.645 0.6450 0.6450 0.6450 0.6450 0.6453 0.6495
A
17

–A
18

0.645 0.6450 0.6450 0.6450 0.6451 0.6452 0.6456
A
19

–A
22

8.765 9.4955 8.1626 8.1052 7.9710 7.9086 8.4929
A
23

–A
30

8.153 8.2870 7.9502 7.8788 7.8928 7.9904 8.0346
A
31

–A
34

0.645 0.6450 0.6452 0.6451 0.6450 0.6451 0.6522
A
35

–A
36

0.645 0.6461 0.6452 0.6450 0.6451 0.6466 0.6482
A
37

–A
40

13.450 11.4510 12.2668 12.5157 12.5404 12.6016 12.9743
A
41

–A
48

8.073 7.8990 8.1845 8.0102 7.9639 7.8204 8.0028
A
49

–A
52

0.645 0.6473 0.6451 0.6450 0.6459 0.6451 0.6462
A
53

–A
54

0.645 0.6450 0.6451 0.6452 0.6462 0.6455 0.6450
A
55

–A
58

16.680 17.4060 17.9632 16.9997 17.1323 17.0752 15.9486
A
59

–A
66

8.159 8.2736 8.1292 8.0362 8.0216 8.1264 7.9057
A
67

–A
70

0.645 0.6450 0.6450 0.6451 0.6450 0.6463 0.6901
A
71

–A
72

0.645 0.6450 0.6450 0.6453 0.6451 0.6461 0.6455
Best weight (kg) 328.823 328.334 327.770 324.244 324.237 324.289 325.161
Weight error (%) 1.414 1.264 1.090 0.002 – 0.016 0.285
f
1
 (Hz) 4.00 4.00 4.00 4.00 4.00 4.00 4.00

f
3
 (Hz) 6.00 6.00 6.00 6.00 6.00 6.00 6.01

Number of FEAs – 50,000 8000 11,620 8860 11,740 3000
Total times (s) – – – – – 236.763 148.489

Fig. 6   The weight convergence 
histories obtained using the 
DUL and DE for the 72-bar 
space truss
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327.77 kg). Compared to the computational cost, the DUL 
required less structural analyses than other optimization 
techniques, namely 74% DE, 66% AHEFA [10], 74% IDE [2], 
62% HALC-PSO [60], and 94% FA [9], but the frequencies 
still satisfy constraints. Furthermore, it takes 148.489 s for 
one run to achieve the near-global optimal solution, while 
DE needs 236.763 s with 30 runs to get the goal. Again, 
DUL shows its efficiency in significantly reducing the com-
putational effort. Figure 6 shows the weight convergence 
histories obtained using two different approaches. Clearly, 
the convergence rate of the DUL is much faster than that of 

the DE algorithm. The weight obtained by DUL approaches 
the optimal solution after only 3,000 analyses, while the DE 
is still far behind (11,740 analyses).

4.1.3 � 120‑bar dome truss

A dome truss with 120 members illustrated in Fig. 7 is 
examined. Here, m1 = 3000 kg, m2 = 500 kg, and m3 = 100 
kg are the lump masses which are attached to node 1, nodes 
2–13, and the remaining nodes, respectively. Design variable 
bounds, material properties, and constraints for this example 

Fig. 7   A 120-bar dome truss 
structure
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are tabulated in Table 1. The DNN model contains 2 hidden 
layers, 20 neurons in each hidden layer and 2000 epochs is 
the finest in its performance for this particular application.

Table 6 provides a comparison between this study and 
other studies available in the literature. It is easily seen that 
the optimum weight obtained by the DUL (8708.975 kg) is 
smaller than DPSO (8890.48 kg), OMGSA (8724.97 kg), 
and HALC-PSO (8889.96  kg). Although the obtained 
results by the DE (8707.404 kg), IDE [2] (8707.289 kg), 
and AHEFA [10] (8707.255 kg) are slightly lighter than the 
present method, the errors between them and AHEFA are 
less than 0.03% . However, it is clear that DUL outperforms 

the existing algorithms in terms of computational cost. Our 
model rapidly finds the optimum weight with only 2000 
FEAs, whilst the others demand a larger number of FEAs for 
the convergence process, i.e. OMGSA with 242,700 analy-
ses, IDE with 4060 analyses. In addition, the computation 
time of the proposed method (215.346 s) is 6 times less than 
that of the DE (1366.651 s). Figure 8 depicts the weight con-
vergence histories obtained for this structure using the DUL 
and DE. Again, the DUL shows its efficiency in significantly 
improving the convergence rate compared with DE but still 
ensuring the quality of solution.

Table 6   Optimization results 
obtained for the 120-bar dome 
truss with frequency constraints

Bold used to emphasize the best minimum weight design

Design variables DPSO OMGSA HALC-PSO IDE AHEFA This study

Ai (cm2) [12] [71] [60] [2] [10] DE DUL

A
1

19.607 20.263 19.8905 19.4670 19.5094 19.4359 19.5002
A
2

41.290 39.294 40.4045 40.5004 40.3867 40.5901 40.4118
A
3

11.136 9.989 11.2057 10.6136 10.6033 10.5945 10.6020
A
4

21.025 20.563 21.3768 21.1073 21.1168 21.0916 21.1160
A
5

10.060 9.603 9.8669 9.8417 9.8221 9.8641 9.8428
A
6

12.758 11.738 12.7200 11.7735 11.7735 11.8052 11.7916
A
7

15.414 15.877 15.2236 14.8264 14.8405 14.8191 14.8365
Best weight (kg) 8890.480 8724.970 8889.960 8707.289 8707.255 8707.404 8708.975
Weight error (%) 2.104 0.203 2.098 0.000 – 0.002 0.020
f
1
 (Hz) 9.0001 9.0020 9.0000 9.0000 9.0000 9.0000 9.0008

f
2
 (Hz) 11.0007 11.0030 11.0000 11.0000 11.0000 10.9999 11.0004

Number of FEAs 6000 242,700 17,000 4060 3560 5740 2000
Total times (s) – – – – – 1366.651 215.346

Fig. 8   The weight convergence 
histories obtained using the 
DUL and DE for the 120-bar 
dome truss
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4.1.4 � 200‑bar planar truss

The next example deals with the design of a 200-bars planar 
truss structure as shown in Fig. 9. All members are catego-
rized into 29 groups using symmetry. The grouping infor-
mation is indicated in Table 7. A lumped mass of 100 kg is 
added to 5 upper nodes. The data of the optimization is given 
in Table 1. The DNN uses 5 hidden layers with 20 neurons 
per layer and a maximum epoch of 2500 for training.

The optimal results, including the design variables, 
weight as well as frequencies, are tabulated as Table 8. 
As expected, the obtained results of the proposed model 
(2161.9 kg) reveals a quite good agreement with the DE 
(2160.94 kg) and AHEFA [10] (2160.74 kg). Note that 
although the optimum weight provided by the HALC-
PSO [60] (2156.73 kg) and OMGSA [71] (2158.64 kg) are 

smaller than those by the DUL, the number of structural 
analyses is larger than those of the proposed approach. More 
concretely, the DUL only requires 2500 analyses for the con-
vergence performance, while the DE, AHEFA, OMGSA 
[71], PFJA [72], and HALC-PSO [60] take 20,000, 11,300, 
7252, 10,546, and 13,000, respectively. Additionally, DUL 
(513.965 s) only spends one-tenth of the computation time 
of DE (6375.934) to obtain the near-global optimal solution 
with the error less than 0.3% . Along with the results of the 
above mentioned examples, the proposed approach shows a 
significant saving of computational efforts when the com-
plexity of problems is increased. The convergence curves 
in Fig. 10 gives a more detailed performance view for the 
present work. Clearly, this procedure converges very quickly 
to the near-optimal solution, while the DE is still quite far 
from the target value.

4.2 � Stress and displacement constraints

4.2.1 � 25‑bar space truss

A 25-bars space truss shown in Fig. 11 is investigated for 
the design optimization with displacement and stress con-
straints. The material density and Young’s modulus are 0.1 
lb/in3 and 104 ksi. It is subjected to concentrated loads P y = 
20 kips and P z = 5 kips as shown in Fig. 11. Cross-sectional 
areas of all members are divided into 8 groups correspond-
ing to 8 design variables with the minimum gauge of 0.01 in2 
and the allowable stress of groups are listed in Table. 9. All 
displacements of nodes are limited in interval [−0.35, 0.35] 
in. In addition, the network architecture including 3 hidden 
layers, 20 neurons in each hidden layer, and 1500 epochs is 
used to build the network.

As the previously presented examples, the optimal results 
gained by this study in comparison with other studies are 
summarized in Table 10. It is easily seen that the optimum 
weight found by the DUL (545.7  kg) agrees well with 
the DE (545.16 kg), TLBO [75] (545.09 kg), HPSO [74] 
(545.19 kg), and BB-BC [73] (545.38 kg) without violat-
ing constraints, while the lighter designs obtained by the 
HS [16] (544.38 kg) and HBB-BC [3] (545.16 kg) violated 
the design constraints. Furthermore, the DUL only requires 
1500 structural analyses with the small error 0.113% , and 
much less than HS [16] (15,000), BB-BC [73] (20,566), 
HPSO [74] (125,000), HBB-BC [3] (12,500), TLBO [75] 
(15,318) and DE (8480). In addition, the total times of DUL 
(49.470 s) is less than a half of DE (104.069 s). Obviously, 
the current approach requires the lower computational cost 
compared to the conventional algorithms. Figure 12 illus-
trates the weight convergence histories using the DUL and 
DE. One again shows the feature of the algorithm that the 
convergence speed accelerates in the early stage and quickly 
stabilizes after only 1200 analyses.
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4.2.2 � 72‑bar space truss

The next example deals with the optimal design of the 
72-bars space truss schematized in Fig. 13. The system 
is subjected to an external loading of 5 kips in the x- and 
y-axes’ positive directions at node 17. Density and Young’s 
modulus of the material are set as 0.1 lb/in3 and 104 ksi. 
The cross-sectional areas of members as design variables 
are categorized into 8 groups. All free node displacements 
are restricted to ±0.25 . The stress limitations of all members 
are ±25 ksi. The minimum design variables are specified 

as 0.1 in2 . The DNN used for this application consists of 
5 hidden layers with 20 hidden neurons in each layer and 
1000 epochs.

Table 11 summarizes the results obtained by the DUL 
and other algorithms reported in recent literatures [3, 16, 
73–75]. It is noticed that in this example, the DUL achieves 
the lightest design overall since the lighter design gained 
by the HPSO violates the design constraints. Furthermore, 
the number of structural analyses of the present method 
is dramatically decreased when compared with previous 

Table 8   Comparison of the 
obtained results for the 200-bar 
planar truss with frequency 
constraints

Bold used to emphasize the best minimum weight design

Design variables HALC-PSO PFJA OMGSA AHEFA This study

Ai (cm2) [60] [72] [71] [10] DE DUL

1 0.3072 0.30785 0.289 0.2993 0.3096 0.3040
2 0.4545 0.47168 0.486 0.4508 0.4485 0.4588
3 0.1000 0.10020 0.100 0.1001 0.1001 0.1016
4 0.1000 0.10010 0.100 0.1000 0.1000 0.1106
5 0.5080 0.54175 0.499 0.5123 0.5114 0.5317
6 0.8276 0.81840 0.804 0.8205 0.8188 0.8247
7 0.1023 0.10096 0.103 0.1011 0.1007 0.1026
8 1.4357 1.42367 1.377 1.4156 1.4241 1.4248
9 0.1007 0.10006 0.100 0.1000 0.1001 0.1026
10 1.5528 1.63199 1.554 1.5742 1.5812 1.5895
11 1.1529 1.13730 1.151 1.1597 1.1662 1.1591
12 0.1522 0.10000 0.131 0.1338 0.1404 0.1472
13 2.9564 2.97378 3.028 2.9672 2.9833 2.9952
14 0.1003 0.10072 0.101 0.1000 0.1005 0.1123
15 3.2242 3.32736 3.261 3.2722 3.2274 3.2739
16 1.5839 1.55580 1.612 1.5762 1.5850 1.5866
17 0.2818 0.23602 0.209 0.2562 0.3016 0.2141
18 5.0696 5.20167 5.020 5.0956 5.0229 5.0919
19 0.1033 0.10000 0.133 0.1001 0.1001 0.1155
20 5.4657 5.47313 5.453 5.4546 5.4589 5.4540
21 2.0975 2.09090 2.113 2.0933 2.0996 2.0911
22 0.6598 0.66730 0.723 0.6737 0.7185 0.6511
23 7.6585 7.53409 7.724 7.6498 7.6974 7.4208
24 0.1444 0.10489 0.182 0.1178 0.1127 0.1880
25 8.0520 7.87075 7.971 8.0682 8.1285 7.7226
26 2.7889 2.81229 2.996 2.8025 2.8448 2.7871
27 10.4770 10.70210 10.206 10.5040 10.3676 10.5569
28 21.3257 21.75078 20.699 21.2935 21.1726 21.5607
29 10.5111 10.44841 11.555 10.7410 10.8075 10.5618
Best weight (kg) 2156.73 2171.34 2158.64 2160.74 2160.94 2161.90
Weight error (%) - 0.6778 0.0886 0.1861 0.1953 0.2400
f
1
 (Hz) 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

f
2
 (Hz) 12.2540 12.3074 12.1180 12.1821 12.2668 12.2679

f
3
 (Hz) 15.0440 15.0066 15.0290 15.0160 15.0776 15.1197

Number of FEAs 13,000 10,546 7252 11,300 20,000 2500
Total times (s) – – – – 6375.934 513.965
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Fig. 10   The weight convergence 
histories obtained using the 
DUL and DE for the 200-bar 
planar truss

Fig. 11   A 25-bars space truss 
structure Pz
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studies. More specifically, it takes only 1000 analyses for 
the convergence performance, while the DE, TLBO [75], 
HBB-BC [3], HPSO [74], BB-BC [73], and HS [16] take 
8580, 19,709, 13,200, 125,000, 19,621, and 20,000, respec-
tively. Moreover, the computational time of DUL (63.715 s) 
is still much smaller than that of the DE (488.135 s). Finally, 
Fig. 14 represents the weight convergence histories obtained 
using two different approaches. As can be seen on the plot, 
the convergence rate of the learning process is much faster 
than the traditional DE. Therefore, the present approach has 
proven again to be the most efficient optimizer.

4.2.3 � 200‑bar planar truss

The last structural optimization problem done herein is to 
optimize a 200-bar planar truss. The geometry and finite 
element representation are shown in Fig. 15. As shown in 

Table. 7, all cross-section areas of the structure are classi-
fied into 29 groups corresponding to design variables. The 
Young’s modulus is 30,000 ksi and the density is 0.283 lb/
in3 for all elements. The allowable stress for all members 
is set to 10 ksi both in tension and compression. The mini-
mum design variables are 0.1 in2 . In this example, the dis-
placement constraints are not considered. The structure is 
designed for three independent loading conditions as fol-
lowing: (1) 1 kip applying in the positive direction of the 
x-axis at nodes 1, 6, 15, 20, 29, 34, 43, 48,57, 62 and 71; (2) 
10 kip acting in the negative direction of the y-axis at nodes 
1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20,22, 24, 
26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 
47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 
71, 72, 73, 74 and 75; (3) including conditions (1) and (2) 
acting together. In this case, the network configuration with 
5 hidden layers, 20 neurons per layer, and 4,000 epochs are 
utilized to perform the optimization process.

Table 12 provides a comparison of optimal solutions 
found by the DUL and several previous studies. It is easily 
seen that the DUL performs better than the HS [16], HBB-
BC [3], CMLPSA [76], and DE in terms of the optimum 
weight, violated constraints, and needed analyses. The opti-
mum weight obtained by the proposed method is close to 
the result of the EHS [19], but it requires a smaller number 
of structural analyses.

It can be observed that the MCOA [15] and TLBO [75] 
are the first and second-best among the eight algorithms. 
Note, however, that the selection of control parameter val-
ues for the metaheuristic algorithms plays an important role 
in performance, robustness, and efficiency of them [75, 
77–82]. Although, in this case, it was not considered in 

Table 9   Allowable stress values for 25-bar space truss

Design variables Allowable compressive 
stress (ksi)

Allowable 
tension stress 
(ksi)

Ai (in2)

A
1

35.092 40.0
A
2
-A

5
11.59 40.0

A
6
-A

9
17.305 40.0

A
10

-A
11

35.092 40.0
A
12

-A
13

35.092 40.0
A
14

-A
17

6.759 40.0
A
18

-A
21

6.959 40.0
A
22

-A
25

11.082 40.0

Table 10   Optimization results 
obtained for the 25-bar space 
truss with displacement and 
stress constraints

Bold used to emphasize the best minimum weight design

Design variables HS BB-BC HPSO HBB-BC TLBO This study

Ai (in2) [16] [73] [74] [3] [75] DE DUL

A
1

0.047 0.010 0.010 2.662 0.0100 0.0100 0.01306
A
2
-A

5
2.022 2.092 1.970 1.993 2.0712 1.9834 1.95147

A
6
-A

9
2.950 2.964 3.016 3.056 2.9570 2.9984 2.96618

A
10

-A
11

0.010 0.010 0.010 0.010 0.0100 0.0100 0.01248
A
12

-A
13

0.014 0.010 0.010 0.010 0.0100 0.0100 0.01282
A
14

-A
17

0.688 0.689 0.694 0.665 0.6891 0.6864 0.69678
A
18

-A
21

1.657 1.601 1.681 1.642 1.6209 1.6776 1.72595
A
22

-A
25

2.663 2.686 2.643 2.679 2.6768 2.6576 2.64302
Best weight (lb) 544.38 545.38 545.19 545.16 545.09 545.16 545.70
Weight error (%) 0.130 0.053 0.018 0.013 – 0.014 0.113
Constraint tolerance (%) 0.206 None None 2.06 None None None
Number of FEAs 15,000 20,566 125,000 12,500 15,318 8480 1500
Total times (s) – – – – – 104.069 49.470
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Fig. 12   The weight convergence 
histories obtained using the 
DUL and DE for the 25-bar 
planar truss

Fig. 13   72-bar space truss 
structure
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Table 11   Optimization results 
obtained for the 72-bar space 
truss with displacement and 
stress constraints

Bold used to emphasize the best minimum weight design

Design variables HS BB-BC HPSO HBB-BC TLBO This study

Ai (in2) [16] [73] [74] [3] [75] DE DUL

A
1
-A

4
1.790 1.8577 1.857 1.9042 1.9064 1.8356 1.8606

A
5
-A

12
0.521 0.5059 0.505 0.5162 0.5061 0.5359 0.5008

A
13

-A
16

0.100 0.1000 0.100 0.1000 0.1000 0.1002 0.1015
A
17

-A
18

0.100 0.1000 0.100 0.1000 0.1000 0.1001 0.1011
A
19

-A
22

1.229 1.2476 1.255 1.2582 1.2617 1.2991 1.2635
A
23

-A
30

0.522 0.5269 0.503 0.5035 0.5111 0.4959 0.5060
A
31

-A
34

0.100 0.1000 0.100 0.1000 0.1000 0.1001 0.1013
A
35

-A
36

0.100 0.1012 0.100 0.1000 0.1000 0.1007 0.1009
A
37

-A
40

0.517 0.5209 0.496 0.5178 0.5317 0.4759 0.4971
A
41

-A
48

0.504 0.5172 0.506 0.5214 0.5159 0.5140 0.5077
A
49

-A
52

0.100 0.1004 0.100 0.1000 0.1000 0.1000 0.1017
A
53

-A
54

0.101 0.1005 0.100 0.1007 0.1000 0.1043 0.1032
A
55

-A
58

0.156 0.1565 0.100 0.1566 0.1562 0.1002 0.1002
A
59

-A
66

0.547 0.5507 0.524 0.5421 0.5493 0.4932 0.5185
A
67

-A
70

0.442 0.3922 0.400 0.4132 0.4097 0.3840 0.4013
A
71

-A
72

0.590 0.5922 0.534 0.5756 0.5698 0.5658 0.5374
Best weight (lb) 379.27 379.85 369.65 379.66 379.63 370.30 370.04
Weight error (%) 2.421 2.578 0.176 2.527 2.519 0.070 –
Constraint tolerance (%) 0.218 None 39.075 None None None None
Number of FEAs 20,000 19,621 125,000 13,200 19,709 8580 1000
Total times (s) – – – – – 488.135 63.715

Fig. 14   The weight convergence 
histories obtained using the 
DUL and DE for the 72-bars 
space truss
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Fig. 15   A 200-bar planar truss 
structure
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studies [15, 75]. However, this is demonstrated in this study 
by the DE algorithm. Despite the same parameters, there is 
a good agreement between the results obtained by the DE 
and other studies for the first six examples, but it is more 
difficult to resolve the last example. Herein, the optimum 
weight obtained by the DE (25564.99 lb) is much heavier 
than the MCOA (25,450.18 lb).

From Table 12, it is easily be seen that the optimum 
weight gained by the DUL is larger than the MCOA [15] and 

TLBO [75] with the error less than 0.4% . One explanation 
for these differences is that the backpropagation algorithm 
based on the gradient descent method deals with the initial 
value of the weights, biases, and learning rate [83]. Fur-
thermore, the total computational cost of DUL (1305.273 s) 
reduces by more than a half of DE (3553.642 s). A com-
parison of the convergence rate between the DUL and DE 
is shown in Fig. 16. Obviously, the DUL always converges 
much more quickly than the DE. Again, this shows the effi-
ciency of our method.

Table 12   Optimization results obtained for the 200-bar planar truss with stress constraints

Bold used to emphasize the best minimum weight design

Design variables HS HBB-BC CMLPSA EHS TLBO MCOA This study

Ai (in2) [16] [3] [76] [19] [75] [15] DE DUL

1 0.1253 0.1033 0.1468 0.150 0.146 0.1390 0.1206 0.1183
2 1.0157 0.9184 0.9400 0.946 0.941 0.9355 0.9345 0.9907
3 0.1069 0.1202 0.1000 0.101 0.100 0.1000 0.1168 0.1142
4 0.1096 0.1009 0.1000 0.100 0.101 0.1000 0.1000 0.2323
5 1.9369 1.8664 1.9400 1.945 1.941 1.9355 1.9292 1.9579
6 0.2686 0.2826 0.2962 0.296 0.296 0.2909 0.2870 0.2906
7 0.1042 0.1000 0.1000 0.100 0.100 0.1000 0.1102 0.1624
8 2.9731 2.9683 3.1042 3.161 3.121 3.0816 3.0780 3.1520
9 0.1309 0.1000 0.1000 0.102 0.100 0.1000 0.2074 0.1380
10 4.1831 3.9456 4.1042 4.199 4.173 4.0816 4.0783 4.1834
11 0.3967 0.3742 0.4034 0.401 0.401 0.3967 0.4329 0.3843
12 0.4416 0.4501 0.1912 0.181 0.181 0.2959 0.1546 0.2115
13 5.1873 4.9603 5.4284 5.431 5.423 5.3854 5.3500 5.4466
14 0.1912 1.0738 0.1000 0.100 0.100 0.1000 0.1027 0.1272
15 6.2410 5.9785 6.4284 6.428 6.422 6.3853 6.3502 6.4490
16 0.6994 0.7863 0.5734 0.571 0.571 0.6332 0.5636 0.5317
17 0.1158 0.7374 0.1327 0.156 0.156 0.1842 0.5160 0.2149
18 7.7643 7.3809 7.9717 7.961 7.958 8.0396 7.9508 8.0113
19 0.1000 0.6674 0.1000 0.100 0.100 0.1000 0.1017 0.1434
20 8.8279 8.3000 8.9717 8.959 8.958 9.0395 8.9503 8.9967
21 0.6986 1.1967 0.7049 0.722 0.720 0.7460 0.8932 0.7054
22 1.5563 1.0000 0.4196 0.491 0.478 0.1306 0.1525 0.2450
23 10.9806 10.8262 10.8636 10.909 10.897 10.9114 11.0423 10.8275
24 0.1317 0.1000 0.1000 0.101 0.100 0.1000 0.1000 0.1265
25 12.1492 11.6976 11.8606 11.985 11.897 11.9114 12.0423 11.8557
26 1.6373 1.3880 1.0339 1.084 1.080 0.8627 0.9196 0.8580
27 5.0032 4.9523 6.6818 6.464 6.462 6.9169 6.7136 6.8944
28 9.3545 8.8000 10.8113 10.802 10.799 10.9674 10.7305 11.1690
29 15.0919 14.6645 13.8404 13.936 13.922 13.6742 13.8833 13.6032
Best weight (lb) 25447.10 25156.50 25445.63 25542.50 25488.15 25,450.18 25564.99 25547.90
Weight error (%) 0.012 1.154 0.018 0.363 0.149 – 0.451 0.384
Constraint tolerance (%) 3.69 9.97 0.071 None None None None None
Number of FEAs 48,000 9875 9650 22,851 28,059 27,720 47,100 4000
Total times (s) – – – – – – 3553.642 1305.273
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5 � Conclusions

In this article, an efficient DUL-based methodology is 
first introduced to directly perform optimization of truss 
structures under multiple constraints. The members’ cross-
sectional areas are parameterized by the parameters of the 
DNN. According to that core idea, the weights and biases 
are considered as the design variables of the structural opti-
mization problem, instead of the cross-sectional areas. The 
loss function is constructed relying on the output values of 
the DNN and the structural responses using FEA. The opti-
mum weight of the structure is found as soon as the train-
ing phase ends without any other algorithms. The efficiency 
of the proposed approach is demonstrated through several 
numerical examples for size optimization of truss structures. 
The obtained results have indicated that the optimum weight 
obtained by this work is a good agreement with six of the 
seven tests. The DUL dramatically saves computational cost 
in almost all problems in comparison with other algorithms. 
In addition, its convergence speed is very fast at the begin-
ning of iterations. This approach promises to extend its 
applications to more complex optimization problems such 
as discrete variables, multi-objective, and so on.

However, the implementation of this study may encoun-
ter some challenges which have still left unsolved. Firstly, 
the optimal architecture and hyperparameters of the DNN 
need to be indicated for each research area. In this study, 
GS and trial-error-tuning approaches were used to choose 
the best-fitted model, but it depends on prior knowledge and 

expert experience too much. To circumvent this limitation, 
one of the promising directions is recommended as genetic 
algorithms, Bayesian optimization techniques, etc. Secondly, 
the examined optimization problems are non-convex ones, 
whilst Adam is a gradient-based optimization algorithm. 
Hence, optimized solutions may be trapped in local mini-
mum due to initial parameters. Accordingly, other robust 
optimizers such as gradient descent with momentum, Nest-
erov accelerated gradient, etc. [84] are promising to circum-
vent these shortcomings.
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