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Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem
by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm
needs to ensure that the trade-off between the computational time and the quality of the solution is found. In
this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE)
algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space
truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model,
also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs).
Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length proce-
dure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm.
These results indicate that the proposed approach not only reduces the computational cost dramatically but also

guarantees convergence.

1. Introduction

Design optimization of structures with linear response has attracted
the interest of many researchers during the last decade. However,
when most structures exhibit significant nonlinear responses in one
way or another, nonlinearities have to be considered in the analy-
sis to evaluate their influence [1,2]. In particular, the design of light
and slender structures such as arches, bars, thin-walled constructions,
etc., are complicated due to the nonlinear geometric effects associated
with large deformations [3-8]. Therefore, these structural optimiza-
tion methods require geometrically nonlinear analysis to obtain their
behaviour under the applied loads [7].

Some researchers have reported a variety of algorithms for solving
nonlinear structural optimization problems and categorized them into
three distinct approaches. The first one is the gradient-based approach
which relies on gradient information to determine the optimum solu-
tion. For instance, Khot et al. [9,10] developed an algorithm based
on an optimality criterion to minimize the weight of the space truss
with geometrically nonlinear behavior. Haririan et al. [11] has tried to
address this type of problem by using the computer program ADINA
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associated with design sensitivity analysis. Besides, a combining model
based on the nonlinear and linear goal programming was delivered by
El-Sayed et al. [12]. To save the computational cost, Saka and Ulker
[7]1 developed a coupling methodology between the optimality crite-
ria approach and the nonlinear analysis technique. An enlargement of
the displacement-based optimization procedure to speed up the anal-
ysis and to enhance accuracy was released by S. Missoum et al. [8].
More recently, Shin et al. [13] has proposed an approach that uses the
equivalent loads to reduce the number of nonlinear analyses. Hrinda
et al. [14] has successfully developed a new algorithm by integrating
the arc-length method and a design-variable update scheme. Nonethe-
less, all gradient-based approaches still have some disadvantages such
as depending on the initial value selection, converging to local min-
ima [13]. Next, the non-gradient-based algorithm is characterized as
the second approach [15-18]. Although algorithms for this kind of
processing have the ability to find the near-global optimum solution,
they require a huge number of evaluation function for reaching a good
solution [19,20]. The final approach, referred to as surrogate-assisted
optimization, has received much attention due to the computation-
ally expensive problems. These methods have proved the effectiveness
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for solving small-dimensional, expensive, black-box global optimiza-
tion problems [21-25]. However, two major existing drawbacks of this
approach are the curse of dimensionality and the small feasible region
[21].

Machine learning (ML) has been successfully applied to a wide range
of fields to assist in decision-making [26], such as image recognition,
computer vision, healthcare, self-driving systems, et. Among ML mod-
els, deep neural network (DNN) has attracted remarkable attention in
computational mechanics [27-29]. It contains multiple hidden layers
between the input and output layers and is able to model complicated
nonlinear relationship between inputs and outputs. In recent years,
a number of studies have proved the effectiveness in applying DNN
to structural analysis [30-32] and optimization [33-36]. Hajela and
Berke [34,37,38] were among the first people who used neural net-
works (NNs) for replacing structural analysis steps in the optimization
process. A surrogate of FEA based on DNN model is developed to esti-
mate the stress distributions of the human thoracic aorta by Liang et
al. [39]. Besides, Lee et al. [40] implemented a survey to assess the
efficiency and accuracy of DNN in structural analysis. Also, Tam et al.
[41] applied deep feedforward neural networks to detect the location
of damaged elements in truss structures. Recently, Chandrasekhar and
Suresh [42] have proposed a conventional neural network to directly
execute topology optimization. Additionally, Kollmann et al. [36] uti-
lized a convolutional neural network to obtain optimal metamaterial
designs. In another work, Zhou et al. [43] developed a data-driven
model to accelerate the truss topology optimization process. A com-
bination of the generative adversarial network and the super-resolution
generative adversarial network to near-optimal structural topology of
heat transfer problems were examined by Li et al. [44]. Also, Yildiz
et al. [45] proposed an integrated procedure, which consists of neural
network and feature-based approaches, predicts optimized designs. In
general, the applications of ML models have yielded satisfactory results
in structural analyses and optimization designs. Although most of the
studies in the literature apply ML algorithms to accelerate the design
optimization process, these applications are limited to linear elastic
materials and small deformations, with linear optimization constraints.
In most of practical problems, we have to due with a lot of structures
that have nonlinear characteristics. Indeed, these issues are much more
complicated than linear problems because of a huge requirement of
numerical iterations. Furthermore, the optimization of nonlinear struc-
tures demands a lot of computing effort. However, the applications of
ML models in solving the optimization problem with geometrically non-
linear behavior have not been actually studied much.

In this paper, an efficient integration of DNN model with DE algo-
rithm is developed to resolve the optimization of truss structures with
geometrically nonlinear behavior. In this approach, the constructed
DNN model serves an surrogate model to directly estimate the displace-
ment at nodes without utilizing the performance of FEA. For this to
be realized, the DNN model must be trained first to learn a mapping
between the input and output quantities. In which, the set of input
variables is generated relies on Latin Hypercube Sampling (LHS) [46],
the set of output responses is obtained from the geometrically nonlinear
analysis by using arc-length method. Several optimizers and activation
functions of the DNN model are surveyed to achieve a better perfor-
mance of the network. Meanwhile, K-fold cross-validation and dropout
techniques are considered to train the models and avoid the over-fitting
problem. Additionally, mini-batch is applied to speed up the training
process. Finally, DE as an optimizer is used to find the global solution
for a new optimization problem involving the original objective and
constraints obtained from DNN. The optimum design problem of geo-
metrically nonlinear space truss under displacement constraints with
the linear elastic material will be discussed without considering the sta-
bility. The effectiveness and reliability of the present method are also
investigated through three numerical examples.

The rest of this article is organized as follows: In Section 2, a brief
description of the governing equation and arc-length technique is given.

Finite Elements in Analysis and Design 196 (2021) 103572

y
A
YtV g
PRd
// K4
P Re
+v -7
YTy ; :

zZ +w y

Z, +w,

z

Fig. 1. Kinematics of Total Lagrangian space truss elements.

The statement of truss layout and size optimization problem with the
integration model is presented in Section 3. Section 4 provides the
extension of DNN-DE in optimization of truss structures with geometri-
cally nonlinear behavior. Numerical examples are illustrated in Section
5. Conclusions, challenges, and opportunities are outlined in Section 6.

2. Geometrically nonlinear analysis of space truss

The primary objective of nonlinear analysis is to search for the
equilibrium configuration of structures, which is under the action of
external loads. In this section, the resolution of the geometrically non-
linear problem is described by using the Total Lagrangian (TL) kine-
matic description [47-49] and linearized arc-length technique (Riks-
Wempner algorithm) [6,50,51].

The first one provides briefly the derivation of internal force vector
and tangent stiffness matrix. The interested readers may refer to Ref.
[47] for a complete treatment of the problem. Let us consider a space
truss element in its initial and current configurations shown in Fig. 1.
The coordinates (x;,y;,2;) and (x5, Y5, 2;) represent the initial configu-
ration at the ends of the element, respectively. So, the initial length of
member can be written as

Co=\Co+ o +00, 1

in which £X =Xy —x1, £ =Y —y1, (5 =2,—2

Let (uy,v;,wyp) and (uy, V5, Wy) correspond to displacements at the
two ends of the current configuration. As a consequence, the current
length of member is expressed as

C=\2 2, @

where s, = Cop + Uy — W, 0y = Loy + Vo — V1,6, = Eop + Wy — Wy
According to Crisfield et al. [47], Green’s strain is defined as
fZ _ fZ
=—>0 3
-
205

The internal force vector is given by
F, = FAe/ (BT, @

where E, and A are the elastic modulus and the cross-section area,
respectively; the matrix B is defined as follows

B= . [—f ¢, —¢

23 | ~fx Y . fx by fz]. G)
0
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The tangent stiffness matrix is obtained by differentiating the inter-
nal force vector with respect to the nodal displacements.

Kg =K +Kg, 6)

where K; and K; are the material stiffness matrix and geometric stift-
ness matrix, respectively, as follows

K, = EA¢,BB, )
b -I

K=2EE |3 T ®
Zo |-I; I,

in which I is the identity matrix of order 3.
According to Crisfield [47], the nonlinear system is given by

g(u,A)=f(u)—Aiq=0, (9a)

c(u, A) = (AuTAu+ A2%y%qTq) — AR =0, (9b)

where u is the displacement vector; f denotes the global internal force
vector; q is the fixed total load vector; g indicates the residual load
vector; A refers to the load parameter; y is the scaling parameter, and
Al refers to the arc-length increment.

The second part presents a combination of incremental and iterative
procedures, which is used to solve Eq. (9). Assume the existence solu-
tion (‘u,’A) in the tth load step, the total parameters of load A® and
nodal displacments u® at the kth iteration are calculated by [47].

A0 =1 + AA®, (10)

u® =ty + Au®, (11)

where AA® and Au® are the load increment and the displacement
increment, respectively. They are determined by the following equation

Au® Auk-D su®
+ , 12)

A0

AAK-1) SAH)

where su® and 6A%) are called the sub-incremental displacements vec-
tor and the sub-incremental load, respectively. Following Crisfield, Riks
and Wempner [6,47,50,51], these values can be obtained by combining
Newton-Raphson’s method with Eq. (9) and the linearized version of
the arc-length method is shown in Fig. 2, as follows

Au©®" 5u®
6A0 = ——— &, (13)
Au(o)réué )
su® = sul + 520 5ul, 14)
where §u§k), 5uflk) and Au© are obtained by
-1
k - _
éué) = —[K (u(k 1))] g(k b (15)
-1
éuflk) = [K (u(k_l))] q, (16)
Au©@ = AJO*5u,, a7

in which K is the global stiffness matrix which is constructed by assem-
bling individual element stiffness matrics K

Riks and Wempner [6,51] first proposed the arc-length method,
which is illustrated in Fig. 3. It is easily be seen that the iterative path
at each step is always orthogonal to the initial tangent. The initial load
increment AA® is indicated by

Al

ALO =
[I*6u

. (18)
I
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Fig. 2. The linearized arc-length method for single degree of freedom.
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Fig. 3. The Arc-length (Riks and Wempner) using constant line search.

Note that the arc-length increment Al in the current time step can
be used as the control parameter as follows

/2
Al="tAl o 19)

where ‘Al is the increment of arc-length in the previous time step, and
'k is the number of iterations needed to converge in the previous time
step.

In dealing with the nonlinear problem, the convergence criterion is
given by

|8%|| < tol. all, (20)

where the tolerance tol is provided by the user. The algorithm for geo-
metrically nonlinear analysis using the linearized arc-length technique
is summarized in several steps in Algorithm. 1.
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Fig. 4. Flowchart depicting the deep neural network-based surrogate model for optimization.

3. Optimum design problem

For the optimization of geometrically nonlinear truss structures
under displacement constraints, the goal is to determine the member
cross-sectional areas that will minimize the weight of the structure. In
which, the area of members is considered the continuous design vari-
ables, as well as a predefined feasible region [7,8]. The general formu-
lation can be represented as follows

m
W(A) =Y Aipit;,

Minimize
i=1
w
Subjectto : gj(A) =-L _1<o, j=12,...,p, (21
[u];
Aimin < A; < Ajmax i=1,2,..,m,

where W(.), g(.) are the objective and constraint functions; A;, p;, ¢; are
the cross-sectional area, the material density, and the length of the ith
member, respectively; m is the total number of members of the struc-
ture; and [u]; denote the displacement and the allowable deflection
of the jth joint; p is the number of constrained displacements; A; ,;, and
A; max are the lower and upper bounds on the design variable A;. We
note that the displacement constraint value achieved at the maximum
load factor of 1.0, and the stress constraints are not considered in this
study.

In order to solve the constrained optimization problem, two of the
most popular approaches are evolutionary and gradient-based algo-
rithms. According to Eq. (21), this problem is referred to as the grey-
box model [52], which contains the computationally cheap objective
function and all computationally expensive constraints [52-54]. So the
above algorithms encountered some difficulties in identifying the near
global optimal solution. Consequently, we draw a deep neural network-
based surrogate model that is used to learn and replace the constraint
functions. Once we obtain the result after the training, DE algorithm
will apply to handle an equivalent optimization problem that contains
an original objective and the approximate constraint functions.

4. DNN-based surrogate model for optimization

In this section, the schematic illustration of the integration model,
as shown in Fig. 4, gives an overall view of the presented study, which
consists of four main blocks as below:

(i) LHS technique is employed to generate a number of samples (A)
and then the displacement responses (U) are collected through
the analysis phase. The input values of the dataset are normal-
ized before training.

(ii) Build a DNN model and training, then take the well trained net-
work as a surrogate model of the constraints.

(iii) An equivalent optimization problem is constructed based on the
original objective function and the DNN model.

(iv) The DE algorithm is introduced to resolve the optimization prob-
lem.

4.1. Data preparation

First of all, data-collection plays a vital role in the performance of
the DNN. In this study, cross-sectional areas of truss members are used
as the input data and the output data are defined as displacements of
nodes. The LHS technique [46] is employed to generate samples that
allow covering the full design space. Only the cross-sectional areas are
adopted as design variables and the other conditions of the geometric
nonlinear problem are fixed. The geometric nonlinear problem, which
has a specific condition, is implemented to collect the output values
corresponding to samples by using the arc-length technique.

The input and output data have a different range of variations. As
mentioned by Berke et al. [38] and Arpat et al. [55], the input values
of the dataset are normalized to the interval of [0.1, 0.9] due to the
nature of the activation function. On the other hand, the normalization
process makes the statistical distribution of each input data roughly
uniform. It has a significant influence on the data-collection process to
be appropriate for training. There are many different types of normal-
ization methods usually used to rescale data. In this work, the min-max
scaling method is applied to normalize the original data X into the inter-
val range [a, b].

=g+ EXnn)b-a)
X=at Kmax = Xmin) 2)

The DNN model can get sufficiently good approximations when the
amount of data are reasonable. The experiments were also conducted
on the 30-bar dome truss to investigate the effect of the size of dataset.
10-fold cross-validation was applied to determine the errors for train-
ing and validation sets in [4-335-335-335-335-2] architecture. ReLu is
applied to all the hidden layers, while in the output layer linear function
is used. The network is trained by Adam optimizer, with the dropout
ratio 0.2, learning rate 0.001, batch-size of 32 and 1000 epochs. Mean
square error (MSE) and root mean square error (RMSE) are reported in
Table 1. It is easily seen that the errors of the model with 1320 samples
is smallest among all datasets. Fig. 5 show the best loss obtained from
four different sizes of the dataset. The first two models are obvious dif-
ference the loss of training and validation. It is shown that the size of
training dataset is not enough. When the number of samples increase to
1320, the loss values of both training and validation shares many simi-
lar characteristics and the network stable, converge after 400th epoch.

4.2. Deep neural network

The multi-layer neural network is a set of mathematical relation-
ships between the inputs and outputs through a training process. The
network learns through analyzing the training data by adjusting weights
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Algorithm 1 Geometrically nonlinear analysis using the linearized

arc-length technique.

Input: Geometric parameters, material properties, boundary conditions, parameters

control

Output: Displacements, stress

1 Setu =0, Au=0, A= 0 for the initial configuration (¢ = 0)
2 fort =110 nyay do
3 Calculate g, Au, AX (k=0) by Eq. (9a), Eq. (17), and Eq. (18)
4 for k = 110 ipay do
5 Compute the sub-incremental displacement, load (6u®), 6A(*)) at the k"
iteration by Eq. (13) and Eq. (14)
6 Update (Au®, AXK)) displacement and load increment at the k" iteration by
Eq. (12)
7 Update the total parameters of load and displacements (A", u®) at the k™
iteration by Eq. (10) and Eq. (11)
8 Evaluate the residual force vector g ()\(k), u<k)) at the k" iteration by Eq. (9a)
9 if |g|| < tol. ||q|| then
10 break and go on for the next step else then return to step 5
11 t =t + 1, update the displacement vector ‘u , load level parameter ‘), and the
arc-length increment Al at the current time step
12 Return to step 3

Table 1
MSE and RMSE values with different size of dataset.
Size Data MSE(1072) RMSE(%)
Training Validation Training Validation
700 3.726 4.101 19.302 10.270
900 0.237 0.255 4.857 5.045
1100 0.189 0.200 4.332 4.469
1320 0.059 0.051 2.429 2.273
Dataset 700
0.02
—— Training
0.01 L Validation
0.00 e — — = - : R,
Dataset 900
0.02
@
o 0.01 A
0.00 -+ T T T T
Dataset 1100
0.02
0.01 A
> sbedaolilber .o PO P | 4 o soakedbes
0.00 -+ T T T T
Dataset 1320
0.0050
0.0025 - \\
0.0000 -r T H—
0 200 400 600 800 1000

epoch

Fig. 5. The best convergence history of loss function with different sizes of data.

and biases [56]. A neural network with one hidden layer is called the
shallow neural network, whereas a neural net with two or more hidden
layers is known as a deep neural network. In this study, a DNN model is
established to predict the deflection of the truss structure with geomet-
rically nonlinear behavior. DNN architecture with full connected layer
is depicted in Fig. 6. There are an input layer, an output layer, and
(N — 1) hidden layers. Each layer consists of a number of neurons (or
units). The units of the present layer are connected to all units in the
previous layer via weights and bias. The output values of the ith hidden

Hidden layers

]

KV n?® (N-1)
W h

Input layer Outpult layer

AN

\
%

V
/

3

3
!
A

V]
H

Fig. 6. A generic architecture of a deep feedforward neural network.

layer and output layer are

o =f (w<f>h<"—1> +b<i>) Vi=1,2,....(N=1), 23)

§=0 (WMWY 4 p®), (24)

where h@ = x is the input vector, h® is the output vector of ith hidden
layer for i # 0; W denotes the weight matrix connecting the (i — 1)1
layer to ith layer; b® indicates the bias vector; fand O are the activation
functions; y refers to the output vector.

Choosing a suitable activation function (AF) for the hidden layer
would be capable of learning more complex patterns and enhance the
accuracy of the regression problem [40]. According to Nwankpa’s sur-
vey [57], the rectified linear unit (ReLU) and sigmoid are most widely
used.

In supervised learning, all datasets are labeled in supervised learn-
ing. The best DNN model is determined by training to identify the opti-
mal parameters (weights and bias). To do this, an optimization algo-
rithm to minimize the loss function between the predicted results and
the simulated results is utilized. MSE [40,58] is the most commonly
used regression model as a loss function which is defined as follows

n

1 a2
Eyse = n Z (}’j —)’j) s (25)
=1
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in which y; and j\/J are the true and predicted output values; n is the
number of units output multiplied by the number of training samples.

Back-propagation is one of the most popular training algorithm,
which relies on the information gradient of the loss function to mod-
ify weights and bias, respectively. Up to now, various algorithms have
been presented and investigated by researchers, such as SGD [59], Ada-
grad [60], Adadelta [61], RMSprop [62], and so on. Adam [63] which
combines the advantages of Adagrad with RMSprop, is a robust and
well-suited method to a wide range of non-convex optimization prob-
lems. More recent, several studies [40,44,64] have been demonstrated
the effectiveness of deep learning method for solving the analysis and
optimal structure problem. Therefore, it is chosen to fit the model on
the training datasets.

Mini-batch gradient descent is commonly used to speed-up in the
training phase. The training data is divided into subsets which are called
mini-batchs as shown in Fig. 7 [65]. Instead of using all data at once or
the samples at a time to update parameters, the incremental update is
executed on each subsets with respect to several instances at a time.

There is a very brief description of the Adam method to update
parameters for the network using mini-batch technique. The first gradi-
ent of MSE with respect to the parameters is given by

8. = VEysg, (0), (26)
where
19
A2
EMSEt = — Z (y] —.)’j) s 27)
b j=1

in which 0 is the parameter vector, which contains elements including
weights and bias; t € N is the timestep; nj, is the number of samples in
the batch; Eygg, is MSE of the subset at the timestep t.

Then, two exponential decay rates m, and v, at timestep t

m, = pim,_; +(1-F1)8g (28)

Ve =Pove1 + (1= ) gf’ (29)

where f;, f €[0,1) are the hyper-parameters, which illustrative to
control the exponential decay rates of these moving averages. m, and
v, are initialized as a vector of 0's. Hence, the decay rates are small at
the initial time steps. To eliminate this effect, the bias corrections for
variables m; and v, are calculated as follows

N m,

i, = 7 (30)
- 1
~ v,
Vv, = . 31
tT 1= b (€19)

Finally, the network parameters are updated by the Adam algorithm as

m
0, =06, _’7%’
\/Vi+e

Here, 7 is the learning rate; ¢ is a constant added to maintain numerical
stability; M, and V, are the bias-corrected first and second raw moment,

(32)
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respectively. As suggested Kingma and Ba [63] our investigation uti-
lizes the default setting of the algorithm with = 0.001, g; = 0.9,
Py = 0.999 and ¢ = 1078. The main steps of the Adam method are
summarized in Algorithm. 2.

It is easily be seen that the existence of noise in data by the error
analysis of the numerical method. On the other hand, the network con-
tains multiple non-linear hidden layers, which can learn a complex
mapping between the network’s inputs and outputs. Therefore, overfit-
ting can occur in the training process. To avoid this phenomenon, many
methods have been investigated to reduce its influence such as valida-
tion, early stopping, train with more data, and so on. One of the most
common explicit techniques to prevent overfitting is dropout, which is
developed by Srivastava et al. [66], and applied successfully for struc-
tural optimization problem [40,64]. According to this method, some
arbitrary units and all its incoming and outgoing connections will be
removed while training the network. In this study, the dropout tech-
nique and k-fold cross-validation are used to improve the performance
of the DNN model. In addition, RandomizedSearchCV hyperparameter
optimization technique available in the Sklearn package in python is
used to select the number of units and hidden layers with the search
space [10, 500] and [1,5], respectively.

4.3. Differential evolution algorithm

DE, introduced by Storn and Price [16], has been demon-
strated effective and robust for solving global optimization problems
[18,67-69]. In this article, it is employed as an optimizer for solving
the equivalent optimization problem where the value of deflections are
predicted from DNN model. The basic steps of the DE algorithm are
summarized in the following.

e [nitialization
Firstly, the initial population including np individuals is randomly
created from the search space. The ith individual is a vector with d
design variables x; = {X;1, X;5, ..., X;4 and is defined by
X;j = Xpinj + rand;; [0,1] (Xmaxj - Xminj) i=1,2,...,np;
j=12,...d, (33)
where Xpa,; and Xy, ; are the upper and lower bounds of x;, respec-

tively; and rand; j10,1] is a uniformly distributed random number on
the interval [0, 1].

e Mutation

Secondly, a mutant vector v; is generated by the mutation strategy
corresponding to a target vector x;. Four popular mutation operations
are usually employed in the DE as follows

rand/1  v;=x, +F (x,2 - xrs) , (34a)
rand/2  v;=x, +F (x,2 - er) +F (xr4 - er) , (34b)
best/1 v;=xXp+F (xrl - xr2> , (340)
best/2  v; =Xy +F (xrl - xr2> +F (xr3 - xr4) , (34d)

where ry,ry,73,74 and r5 are five different integer numbers that are
chosen from {1,2,...,i—1,i+1,...,np}; Xp is the best individual in
the population; and the scale factor F is randomly picked out from the
interval (0, 1].

According to Eq. (34), the values of the mutant vector v; may be
violated its boundary constraint. Hence it is adjusted to the allowable
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Algorithm 2 Adam (Kingma and Ba [63]).

Input: parameters 8, (the initial values of weights and biases)
Output: parameters 6 (the optimal values of weights and biases)
1 Given hyper-parameters 7 = 0.001, 3; = 0.9, 2 = 0.999 and ¢ = 1078

2 Set mp=0,vg=0,t=0
3 while 0 nor convergence do
t=t+1

e ® N v R

Compute g; using current mini-batch at timestep ¢ by Eq. (26)
Setm; = Simy_; + (1 — 1) .g: [see Eq. (28)]

Set v, = Bavi_1 + (1 — B2) .87 [see Eq. (29)]

Set h; = my/ (1 — ) [see Eq. (30)]

Set ¥, = v;/ (1 — B5) [see Eq. (31)]

10 Update parameters 8, = 0,_; — i,/ (\/ﬁ + 5) [see Eq. (32)]

limits of the variable designs by the following equation

2Xminj = Vij if Vij < Xpinj»
Vij =9 2Xmaxj — V5 1V > Xax s (35)
Vjj otherwise.

e Crossover

Next, a trial vector u; is generated from the mutant vector v; and its
target vector x; based on the crossover operator. It can be expressed as

ii ifj=K d[0,1] <Cr,
oy = {VU if j or rand [0, 1] T 36)

Xij

otherwise,
where Cr is the crossover control parameter which is randomly selected

in [0, 1]; K is an integer number randomly in [1, np].
e Selection

Finally, a selection operation is implemented to chose better indi-
viduals by comparing the objective function value of each trial vector
f (u;) and target vector f (x;) in the current population. The operation is
expressed as follows
{ui iff (up) < £ (%),

X; =

(37)

x; otherwise.

5. Numerical examples
5.1. Nonlinear analysis

In this section, two numerical examples are investigated to demon-
strate the effectiveness and reliability of the analysis results before
implementing the optimization step. The own weight of the truss is
neglected in the analyzes.

5.1.1. 24-bar dome truss

A star space dome consisting of 24 bars is shown in Fig. 8. All
members have the same axial stiffness EA = 8.0 X 107 N. The cen-
tral node of the structure is subjected the concentrated force P. The
parameters of the arc-length procedure used in the simulations were:
imax = 100;Al = 0.15and tol = 1.0 X 107°. This example has been
studied by Bonet [70], Greco [48] and Krishnamoorthy [71].

Fig. 9 shows the equilibrium path at the apex of the truss. The com-
putational result indicates that the arc-length method is able to capture
the full nonlinear behavior and overcome the limit points. The result
of this problem shows a good agreement with the equilibrium path
obtained by Bonet.

5.1.2. 60-bar dome truss

The second structure is considered to evaluate the geometric non-
linear behavior of a more complex dome truss. The geometry and load-
ing shown in Fig. 10 has been solved by Choong [72]. It comprises 25

2cm

6.216cm

Fig. 8. Star dome space truss with 24 bars.

nodes and 60 elements with the same axial stiffness EA = 1.0 x 10%.
The vertical loads P are applied at joints 13-18. The parameters used
for the path-following technique were i,, = 100;Al = 2.0 and
tol = 1.0 X 1075.

The vertical displacement at node 1 versus load P curve obtained
with the proposed approach was a good agreement with that of Choong
et al. [72], are shown in Fig. 11. It can be seen that the methodology
has the ability to trace the complete equilibrium path with several bifur-
cation points and limit points. These results proved that the developed
computational codes are enough reliability to solve nonlinear problems.

5.2. Optimization

In this section, three well-known benchmark problems are explored
to accurately evaluate the integration model. The parameters of DE are



H.T. Mai, J. Kang and J. Lee

5
10 £10 ; ;

Arc-length
8r o Bonet (2012)| T

Load P

8 . . . . . .
0 2 4 6 8 10 12 14 16 18 20

Central deflection (cm)

Fig. 9. Load-deflection path for the star dome truss with 24 bars.

Fig. 10. Star dome space truss with 60 bars.

set similar for all investigated examples as follows [16-18,73]: popula-
tion size npop = 20, maximum number of generation MaxGen = 2000,

Table 2
The architecture of DNN model.
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Fig. 11. Load-deflection curve for the star dome truss with 60 bars.

scaling factor F = 0.8, crossover control parameter Cr = 0.9, and value
tolerance tol = 107°. The DE is a stochastic nature of metaheuristic
algorithms. Therefore, 30 independent runs are implemented for each
problem. In all applications, FEA is utilized to obtain the dataset with
1320 data pairs. It is assumed that the material is a linear elastic mate-
rial. The input data are cross-section areas and the displacements at
free nodes are defined as the output data of the DNN model. The net-
work uses a batch size of 32, 1000 epochs, and learning rate 0.001.
In order to avoid overfitting, 10-fold cross-validation and dropout with
ratio of 0.2 were applied. The network architectures are found by using
randomized search, and they are summarized in Table 2. The results
obtained from the integration model are presented in terms of the best
weight, and constraints evaluation. Accordingly, the result of the best
run is reported for comparison with the DE algorithm, and various algo-
rithms. To get a fair comparison between the different methods, all the
tests are implemented in PyCharm anaconda Python environment using
Sklearn, Keras, Tensorflow libraries, and a desktop computer Core(TM)
i5-8500 CPU 3.0 GHz with 16 GB RAM.

5.2.1. 30-bar dome truss

The first example is the 30-bar dome space truss, which was first
introduced by Khot and Kamat [10]. Cross-section areas of the structure
are categorized into four groups with pin supports, geometry, dimen-
sions, boundary conditions as shown in Fig. 12. The upper and lower
bounds of the design variable are respectively 0.1in? and 2in®. The den-
sity of the material is p = 0.11bs/in® and Young’s modulus is equal to
E = 1071bs/in?. The vertical z-direction force F = 2000Ib is applied at
node 1 of the truss. Since this is a symmetric structure, the displace-
ment of nodes 1-2 in the z-direction are not allowed exceed +10in. The
network architecture that is given in Table 2, is used to build the model.
The combinations of optimizers and activation functions are adopted to
investigate of the DNN model, and the results are reported in Table 3.
It can be seen that Adam and SGD are, respectively, the best optimizer
and the worst optimizer. And meanwhile, Softmax performs worse than

Problem Input layer Hidden layers Output layer
No. Units No. layers No. Units/layer Activation function No. Units Activation function
30-bar dome truss 4 4 335 ReLU 2 Linear
52-bar dome truss 8 5 71 Sigmoid 4 Linear
25-bar space truss 8 3 126 ReLU 4 Linear
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Fig. 12. 30-bar dome space truss structure.

the other activation functions on most of the optimizers, whereas ReLU
is either the best or the second best on 5 of 6 combining. Two of the
most remarkable results to emerge from combining ReLU, Sigmoid into
Adam are slightly lower than the other combinations. Hence, they are
suggested for implementing in this study. Fig. 13 illustrates the conver-
gence history of the loss function. From displayed results, MSE of both
training and validation sets approach zero after 500 epochs. Table 4
summarizes mean, standard deviation (Std) and 95% confidence inter-
vals (CI) of the errors with respect to training and validation sets. It can
be seen that MSE are smaller than 0.2 X 1073 and the range where
the 95%CI RMSE values are lower than 49%. It has been proved that the
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Fig. 13. The convergence history of loss function of 30-bar dome space truss
structure.

network tackled the issue of overfitting and underfitting.

The results of the first benchmark gained by this study are pre-
sented in Table 7 and comparison between the present method and oth-
ers. Firstly, it can be seen that there is a large difference between the
optimization considering linear and nonlinear analysis. The optimum
weights were 333.778lb and 730.1061b with respect to linear and non-
linear behaviour and the difference was 118.74%. This show that con-
sideration of the geometric nonlinearity effect is essential for the design
of the structure. Therefore, the structure can be dangerous when the
geometric nonlinearity effects are considered. On the other hand, the
optimum weight obtained from DNN-DE is better than the results given
by Khot [10], Missoum [8], and Hrinda [14]. Although there is a negli-
gible discrepancy (relative errors is small 0.489%) in the best weight, it
is a large computation time difference between the DNN-DE and FEA-
DE. Specifically, the average times of the FEA-DE take 8,959s to find
the optimal solution with 2,821,111 FE analyses while DNN-DE only
requires 3746.936s with 4120 predictions, including 2549s (68.03%)
of the data-collection, 1197.376s (31.95%) of the training session and
0.56s (0.02%) of the optimization session. It is easily explained that
FEA-DE takes a lot of time to evaluate due to the incremental iterative
algorithm. In general, DE takes approximately three days to complete

Table 3
MSE of the 30-bar dome truss (10~*) with respect to various optimizers and activation functions.
Optimizer Adam RMSprop Adagrad SGD Adadelta Adamax
Activation function Training Test Training Test Training Test Training Test Training Test Training Test
Softmax 220.4 203.7 246.8 226.7 45.74 44.67 223.80 206.3 231.63 219.8 223.4 206.2
Softplus 1.355 3.620 3.006 5.680 92.27 84.46 94.267 85.96 24.369 19.88 1.187 8.121
Tanh 0.304 4.578 0.451 13.17 14.70 15.58 94.529 87.04 13.720 25.92 2.435 5.898
Sigmoid 0.680 2.293 2.284 2.838 19.45 14.70 219.64 205.7 32.899 24.61 1.890 1.412
ReLU 0.174 3.803 0.789 6.144 0.321 4.571 17.078 17.89 0.4706 5.327 0.290 5.734
Table 4
Results of MSE and RMSE for the dome structure with 30 members.
Data Statistics MSE(1073) RMSE(%)
w, W,y Total \ Wy Total
Training Mean 0.161 1.361 0.761 1.248 3.678 2.749
Std 0.066 0.227 0.129 0.235 0.303 0.232
95% CI 0.11-0.21 1.2-1.52 0.67-0.85 1.08-1.42 3.46-3.89 2.58-2.91
Validation Mean 0.177 1.485 0.831 1.308 3.796 2.842
Std 0.079 0.574 0.314 0.261 0.699 0.508
95% CI 0.12-0.23 1.07-1.9 0.61-1.06 1.12-1.49 3.3-4.3 2.48-3.21
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Fig. 14. Load—displacement curve of the first constraint for the optimum solu-
tion at node 1 in 30-bar dome truss.

30 independent optimization runs based on the FEA model, while it
only spends 3763.176s on the DNN model. Therefore, the integration
model helps to save a huge amount of computational cost.

The areas obtained from Table 7 were used for performing the non-
linear analysis to achieve the displacement constraint values, which are
shown in Table 8. The equilibrium paths of the center node are dis-
played in Fig. 14. It should be noted that the results obtained from
Khot [10], Missoum [8], and Hrinda [14] are studied on the structural
design optimization problems without displacement constraints. Specif-
ically, Khot [10] defined the optimization problem with the total energy
constraint not exceeding total potential energy. At the same time, Khot
and Hindra indicated that the total potential energy associated with the
optimum design at the nonlinear critical point and then the load incre-
ment equals 1. As shown in Fig. 14, the first critical points achieved
as the displacement between 8in and 12in, where the critical point of
FEA-DE obtained at 9.6927in. For the integration model, the output val-
ues of data points were collected in the training dataset when the load
increment equals 1. Consequently, if optimization algorithms are good
enough and the load increment constraint value is set to 1, the critical
point position will not change when the displacement constraint value
is an arbitrary choice between 10in and 12in. Therefore, the compari-
son between our approach and the others has equivalent significance.
As shown in Fig. 14, the load-deflection plots obtained from Khot and
Hrinda are two critical-limit points for each curve. The first critical-limit
points are achieved when the load factors corresponding to 0.9998 and
0.99999 are less than 1. These differences are not much significant,
and they can be deal with control parameters and the tolerance for
the stopping criteria of the nonlinear solution technique. These rea-
sons, along with the sensitivity of the nonlinear response, can make the
large displacements obtained from Khot and Hrinda as shown in 8. For
the DNN-DE approach, the constraint results agree well with the FEA-
DE, and close to the constraint limit. The weight convergence histories
obtained using the algorithms for this example are given in Fig. 15. It
is found that the proposed approach saves lots of computational efforts
to reach the near-global optimal solution.

5.2.2. 52-bar dome truss

In the second example, the optimization problem for the 52-bar
dome truss is investigated. This problem has been previously exam-
ined by Saka [7]. The geometry and finite element representation are
shown in Fig. 16. All members of the structure are categorized into
8 groups, which are labeled in the same figure. The Young’s modulus
is E = 21000 kN/cm? and material density is p 7.85 N/cm? for

10
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Fig. 15. The weight convergence histories of the 30-bar dome truss.
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Fig. 16. 52-bar dome truss.

all elements. The cross-section areas of members are permitted to vary
between 2 cm? and 100 cm?. The system is subjected to an external
loading in the direction of the z-axis which was 150 kN at joints 6-13.
The vertical displacements of all free nodes are restricted to 10 mm. The
network architecture and activation function mentioned in Table 2 is
used for the training of process operators. The total time requires 3194s
to generate the training dataset, 753.326s to do the training process.
The loss model depicting convergence of MSE of training and valida-
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Fig. 17. The convergence history of loss function of 52-bar dome truss.

tion sets are shown as Fig. 17. It can be seen that the loss of training
and validation set tends to decrease at first and then converge to zeros
and stable after 400 epochs. In Table 5, the mean and standard devia-
tion are listed along with the 95% confidence interval for each and all
outputs of the network. The results indicate that MSE close to zeros and
the 95% confidence interval of RMSE values are smaller than 2%.

As the previously indicated example, Table 9 summarizes the opti-
mal results obtained by this work, and comparing with those available
from the existing literature. Table 10 shows that the results of con-
straints obtained from the geometrically nonlinear analysis by using the
arc-length method. The third constraint obtained from Saka [7] is larger
than the others. It can be explained by the sensitivity of the nonlinear
response and control parameters. On the other hand, the results of DNN-
DE attain a quite good agreement with the FEA-DE. More specifically,
the optimal solution obtained from this study is very close to FEA-DE
(the relative error of the optimum weight is very small 0.0024%). Fur-
thermore, it takes 3948.976s with only 14100 predictions to achieve
the optimal solution while FEA-DE takes 68,408s with 12,762,048 FE
analyses to get the goal.
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Fig. 18. The weight convergence histories of the 52-bar dome truss.

Consequently, the integration model can reduce the computational
time more than 17 times with FEA-DE. As observed, all displacements
of the DE based methods are free from any violations of constraints. The
weight convergence histories obtained using the DNN-DE and FEA-DE
for this example are shown on Fig. 18. The convergence rate of DNN-
DE is faster than FEA-DE. Hence, it has been demonstrated that our
method is effective, reduces the computational time, and guarantees
solution accuracy.

5.2.3. 25-bar space truss

A space truss containing 25 bars shown on Fig. 19 is considered
as the last problem. This example has been studied by Saka [7] for
the optimization problem with geometrically nonlinear behavior. Cross-
sectional areas of all members are divided into 8 groups correspond-
ing to 8 design variables in the same figure. The bounds of the sizing
design variables are 2 cm? < A; < 20 cm?. The density of the material is
assumed constant in each element p = 7.85 N/cm?® and Young’s mod-
ulus is E = 20700 kN/cm?. This structure is subjected to the loading
condition listed in Table 11. Allowable displacements at joints 1 and 2
are restricted to 10 mm in the x and y directions. The optimal mapping
is defined by the network architecture in Table 2. Fig. 20 depicted the

Table 5
Results of MSE and RMSE for the dome structure with 52 members.
Data Statistics MSE(10~%) RMSE(%)
Wi Wy W Wy Total Wy Wy W Wy Total
Training Mean 1.656 1.334 1.445 1.703 1.535 1.275 1.145 1.195 1.251 1.228
Std 0.506 0.394 0.313 0.987 0.425 0.185 0.159 0.138 0.392 0.171
95% CI 1.29-2.02 1.05-1.62 1.22-1.67 1-2.41 1.23-1.84 1.14-1.41 1.03-1.26 1.1-1.29 0.97-1.53 1.11-1.35
Validation Mean 3.028 2.431 2.327 3.041 2.707 1.658 1.486 1.473 1.631 1.590
Std 2.143 1.597 1.445 2.198 1.585 0.557 0.498 0.417 0.652 0.444
95% CI 1.49-4.56 1.29-3.57 1.29-3.36 1.47-4.61 1.57-3.84 1.26-2.06 1.13-1.84 1.17-1.77 1.16-2.1 1.27-1.91
Table 6
Results of MSE and RMSE for the 25-bar space truss.
Data Statistics MSE(10~%) RMSE(%)
u, \2 uy v, Total u v, u, v, Total
Training Mean 0.515 0.434 0.491 0.431 0.468 0.705 0.650 0.694 0.646 0.677
Std 0.205 0.165 0.145 0.167 0.142 0.139 0.117 0.103 0.125 0.104
95% CI 0.37-0.66 0.32-0.55 0.39-0.6 0.31-0.55 0.37-0.57 0.61-0.8 0.57-0.73 0.62-0.77 0.56-0.74 0.6-0.75
Validation Mean 0.758 0.941 0.737 0.954 0.847 0.840 0.913 0.833 0.906 0.878
Std 0.441 0.745 0.404 0.861 0.582 0.243 0.346 0.219 0.386 0.293
95% CI 0.44-1.07 0.41-1.47 0.45-1.03 0.34-1.57 0.43-1.26 0.67-1.01 0.67-1.16 0.68-0.99 0.63-1.18 0.67-1.09
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Comparison of optimal results of the dome structure with 30 members.

Design variables A; (in?) Linear Geometric nonlinear
FEA-DE Khot [10] Missoum [8] Hrinda [14] FEA-DE DNN-DE
1 0.6947 1.6926 1.6904 1.69407 1.6113 1.51
2 0.4825 1.3754 1.3833 1.37499 1.4629 1.581
3 0.1 0.1 0.1 0.10037 0.1 0.1
4 0.1627 0.2693 0.2674 0.26346 0.1 0.1
Best weight (Ib) 333.778 766.19 766.72 765 730.106 733.629
No. function 4540 - - - 2821111 4120
evaluations
Time average (sec) 6.07 - - - 8959 3746.936
Table 8
Two displacement constraints of the 30-bar dome truss.
Displacements (in) Khot [10] Missoum [8] Hrinda [14] FEA-DE DNN-DE
Wy 48.733 8.1923 48.7505 9.6972 9.6927
) 2.05010 0.0899 2.06800 1.1664 1.2489
z
Table 9 A

Comparison of optimal results of the dome structure with 52 members.

Design variables A; (cm?) Geometric nonlinear

Saka [7] FEA-DE DNN-DE
1 81.82 2 2
2 22.41 2 2
3 33.58 2 2
4 14.45 2 2
5 10.64 16.672 16.753
6 25.16 17.585 17.869
7 2 2.519 2.3013
8 2 2 2
Best weight (kg) 5161 2141.87 2142.41
No. function - 12762048 14100
evaluations
Time average - 68408 3948.976
(sec)
Table 10
The second displacement constraints of the 52-bar dome truss.
Displacements (mm) Saka [7] FEA-DE DNN-DE
Wy —-2.772 1.328 1.206
) —2.826 0.72 0.742
Wy 13.045 10 10
Wy 9.491 10 9.648

convergence history of the loss consisting of MSE of training and vali-
dation sets. The mean, standard deviation, and 95% confidence interval
of MSE and RMSE are presented in Table 6 in which the values of MSE
and RMSE are smaller than 10~4 and 1%, respectively.

The optimal results obtained by the present approach and the oth-
ers are tabulated as Table 12. Again, we can see that the optimum
weight obtained by the integration model and FEA-DE are similar and

Table 11
Loading condition for 25-bar spatial truss.

Node Loading (kN)

X Y Z
1 -80 -120 30
2 —60 -100 30
3 -30 0 0
6 -30 0 0

12

Fig. 19. 25-bar space truss.

smaller than the result given by Saka [7]. Meanwhile, DNN-DE saves
a lot of time and the small relative error (0.23%) to FEA-DE. More
specifically, it only spends 1853s for the data-collection, 895.793s for
the training and optimization process while FEA-DE takes very long
time (28,179s). Our approach is only requires 18,120 predictions while
FEA-DE needs 1,490,799 FE analyses to obtain the optimal global solu-
tion. More importantly, none of the deflection constraints do not exceed
the allowable displacements as shown in Table 13. Fig. 21 provides
the weight convergence histories obtained by two different approaches.
Although the convergence rate of the DNN-DE is lower than FEA-DE,
DNN-DE shows its accuracy and effectiveness in significantly reducing
the computational cost.

6. Conclusions

In this paper, a novel deep neural network-based surrogate model
is proposed for the optimization of truss structures with geometrically
nonlinear behavior. DNN is employed to learn the model complex rela-
tionship between the inputs and the outputs as a surrogate model and
then displacements of the truss are quickly predicted without solving
nonlinear programming problems. DE algorithm is carried out to solve
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Fig. 20. The convergence history of loss function of 25-bar space truss.

Table 12
Comparison of optimal results of the 25-bar space truss.

Design variables A; (¢cm?) Geometric nonlinear

Saka [7] FEA-DE DNN-DE
1 2 2 2
2 7.5 3.098 4.099
3 13.12 16.91 15.113
4 2 2 2
5 4.27 6.566 3.906
6 3.8 3.891 4.851
7 4.22 3.33 3.744
8 17.15 18.32 17.779
Best weight (kg) 507 504.315 505.493
No. function - 1490799 18120
Evaluations
Time average (sec) - 28179 2748.793
Table 13
The second displacement constraints of the 25-bar spatial truss.
Displacements (mm) Saka [7] FEA-DE DNN-DE
u —6.704 —-9.764 —8.313
v, -10 -10 -10
u, —6.289 —9.346 —7.905
Vy -8.85 —8.323 —8.601

a new structural optimization, which combines the original objective
with constraints obtained from DNN model. Three numerical examples
are tested to verify the accuracy, effectiveness, and robustness of the
proposed approach. The attained results indicated that the integration
of DNN and DE saves computational cost dramatically in almost all
problems. Meanwhile, DNN model guarantees capable of good predict-
ing displacements with average errors smaller than 0.5% in the opti-
mum weight. Therefore, the integration model is an important contribu-
tion of this study and promising to extend its applications to more com-
plex engineering problems, such as plate structures, shell structures,
etc.

In supervised learning, one of the challenges facing many
researchers today indicates the optimal DNN architecture, which will
affect the computation time and accuracy of the training model, and this
study is no exception. Whereas the number of nodes in the input and
output layers is indicated by the physical characteristics of the prob-
lem, the type of activation function, the number of hidden layers and
the nodes in each of these hidden layers often require considerable user
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Fig. 21. The weight convergence histories of the 25-bar space truss.

experience blue [34,38]. To circumvent this limitation, one promising
direction will be improved in the next our work by using Bayesian opti-
mization techniques to determine the optimal architecture of DNN.
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