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Abstract

In this study, a physics-informed neural energy-force network (PINEFN) framework is first proposed to directly solve the
optimum design of truss structures that structural analysis is completely removed from the implementation of the global
optimization. Herein, a loss function is constructed to guide the training network based on the complementary energy, con-
stitutive equations, and weight of the structure. Now only neural network (NN) is used in our scheme to minimize the loss
function wherein weights and biases of the network are considered as design variables. In this model, spatial coordinates of
truss members are examined as input data, while corresponding cross-sectional areas and redundant forces unknown to the
network are taken account of output. Accordingly, the predicted outputs obtained by feedforward are employed to establish
the loss function relied on physics laws. And then, back-propagation and optimizer are applied to automatically calculate
sensitivity and adjust parameters of the network, respectively. This whole process, which is the so-called training, is repeated
until convergence. The optimum weight of the structure corresponding to the minimum loss function is indicated as soon as
the training process ends without using any structural analyses. Several benchmark examples for sizing optimization of truss
structures are examined to determine the reliability, efficiency, and applicability of the proposed model. Obtained outcomes
indicated that it not only reduces the computational cost dramatically but also yields higher accuracy and faster convergence

speed compared with recent literature.

Keywords Physics-informed - Force method - Deep neural networks - Machine learning - Unsupervised learning -

Complementary energy - Truss optimization

1 Introduction

Over the past decade, the design optimization of truss
structures has received considerable attention from many
researchers in the computational mechanics community. Its
objective is to minimize the structural weight while satisfy-
ing all constraints. In general, although there have been a
variety of algorithms employed to address this issue, they
all work on the same basic principle, as shown in Fig. 1a.
Therein, the optimization tool often requires numerical sim-
ulations, such as finite element analysis (FEA), to estimate
structural responses during each iteration of the optimizer.
And they can be divided into two main classes. In the first
one, the gradient-based algorithms have been successfully
applied for searching optimal solutions. For instance, an
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algorithm based on the optimality criterion (OC) is devel-
oped by Khot et al. [1-3] and Rizzi [4] to find the optimal
weight of the truss structure. Hrinda et al. [5] has proposed
a new algorithm by combining the design-variable update
scheme and arc-length method. Besides, a coupling meth-
odology based on the OC and nonlinear analysis technique
was delivered by Saka and Ulker [6] to save the computa-
tional cost. Schmit and Farshi [7] developed a sequence of
linear programs to sizing structural systems. However, this
approach cannot deal with the lack of gradient information
from the objective and constraint functions. The other one is
the gradient-free algorithms which rely on evolutionary and
population genetics to address the optimal design of truss
structures, such as firefly algorithm [8, 9], harmony search
[10, 11], genetic algorithms [12, 13], particle swarm algo-
rithm [14-18], chaotic coyote algorithm [19], big bang-big
crunch [20, 21], teaching-learning-based optimization [22],
hybrid differential evolution and symbiotic organisms search
[23], adaptive hybrid evolutionary firefly algorithm [8],
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evolutionary symbiotic organisms search [24], and so on.
Despite these algorithms have achieved certain success, they
require many evaluation functions, slow convergence rate,
and high computational cost due to large-scale problems.
In recent years, machine learning (ML) has been dem-
onstrated to be a powerful tool for making decisions with
applications in a variety of areas, including medical diag-
noses, voice recognition, language processing, industrial
automation, etc. Therein, deep neural network (DNN) in
the form of ML models has received much attention in
computational mechanics fields, such as structural analysis
[25], structural health monitoring [26], reliability analysis
[27], and structural optimization [28] is no exception. As
far as our knowledge goes, the applications of the NN to the
structural optimization problems can be classified into two
baselines. The first one is an approach based on data-driven
models. Accordingly, the networks are commonly used in
the idea of supervised learning to learn the mapping from
arbitrary designs obtained by numerical simulations and act
as a surrogate model of the solver. In fact, this methodology
is not a new idea and has been developed since the 1990s
for optimization of truss structure. For example, NN mod-
els were derived through supervised training for solving
the optimal design of structural truss by Hajela and Berke
[29, 30]. Adeli and Park [31] developed a nonlinear neural
dynamics model to minimum mass design of space trusses.
In addition, a combination between the NN and genetic algo-
rithm for the optimization of industrial roofs was released
by Ramasamy [32]. In recent times, an integrated model of
differential evolution algorithm and DNN to optimize truss
structures with geometric nonlinearity was introduced by
Mai et al. [33]. Besides, it has also been successfully applied
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to tackle topology optimization problems of structures. Of
particular interest is the study by Li et al. [34], in which
the authors proposed a non-iterative topology optimiza-
tion framework using the NN for heat conduction structure
design. White [35] and Chi [36] used the NN as a surrogate
model to replace the structural analysis phase for the topol-
ogy optimization. However, in order to achieve the optimal
solution, it may require a huge amount of data to train as
well as the high computational cost to generate the input data
and their corresponding supervised labels via the structural
analysis. Further, a variety of questions arise as to how to
determine the sufficient data size for different problems, how
to ensure the generalization ability of the trained model, and
is the obtained results really better than the conventional
alternatives? And it is very difficult to answer these ques-
tions definitively. In addition, this approach still requires
the structural analysis model, and the physics information is
removed in the training process. The second baseline meth-
odology is a combination between the NN and numerical
solver to perform structural optimization directly. Figure 1b
provides an overall view of this approach. Herein, the net-
work is employed as an optimizer, while its loss function is
built by the output values of the network and the structural
responses obtained from the structural analysis, respectively.
And several researchers have successfully applied this model
with promising potential for the structural optimization. For
example, Chandrasekhar et al. [37-39] firstly introduced
a direct topology optimization framework using the NN.
In addition, a deep unsupervised learning is proposed by
Mai et al. [28] to perform the optimization of truss struc-
tures. Although this paradigm has shown the effectiveness
of the NN for structural design optimization problems, it
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still demands the structural analysis. The flowchart of this
procedure is illustrated in Fig. 1b. It is easily be seen that
most steps are similar as those involved in the conventional
method (Fig. 1a). In fact, there is little difference which the
network plays a crucial role in the implementation process
as an optimizer. Hence, it also encounters difficulties due to
the structural analysis.

Physics-informed neural networks (PINNs) are intro-
duced as new, powerful, and efficient method for numerical
simulations. In contrast to the data-driven approach, this
technique allows to solve the problems by minimizing the
loss function which is constructed based on the physics laws.
In comparison to conventional numerical solvers, it can eas-
ily handle the problems with irregular domains as well as
completely avoids a discretization like FEA [40]. Further-
more, the training data are easily collected from the known
design information of the structure without any structural
analyses, for example, boundary conditions (BCs), geometry,
properties of materials, etc. In addition, one of its outstand-
ing characteristic is that the sensitivity can be quickly and
easily calculated with a back-propagation (BP) algorithm
of the network. Hence, it has received much attention in the
engineering field. PINN was first introduced by Raissi et al.
[41] to solve partial differential equations (PDEs) with the
associated boundary and initial conditions into the loss func-
tion. Nguyen-Thanh et al. introduced a deep energy method
for the solutions of nonlinear finite deformation hyperelastic-
ity problems. The same idea was adopted by Mai et al. [25]
to perform the geometrically nonlinear analysis of inelastic
truss structures. Indeed, PINN has recently been proven
effective for solving more complex computational problems,
including PDEs, structural analysis, fluid mechanics, and so
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on. However, it has still not been yet utilized for the struc-
tural optimization design thus far.

Motivated by the foregoing challenges and based on exist-
ing works, this paper aims at presenting a physics-informed
neural energy-force network framework for solving size opti-
mization of truss structures without using structural analysis.
Instead of tackling the structural optimization problems as
traditional approaches which are the combination between
optimization algorithm and structural analysis, here only NN
is built in our scheme to find the optimum weight of the struc-
ture, as illustrated in Fig. 1c. Accordingly, now the weights
and biases which are known as trainable parameters of the
network are regarded as design variables in place of the cross-
sectional areas of truss members. Therein, the spatial coordi-
nates of all truss members are treated as the input data which
are easily gathered from the structure’s connectivity informa-
tion. The important thing that must be highlighted here is that
this work relies on unsupervised learning, so the NN only has
input data and does not require corresponding output values.
In the proposed framework, the output of the network are the
unknown cross-sectional areas and redundant forces which are
represented by the parameters of the network. Accordingly,
the training process aims to seek the optimal parameters of
the network such that the loss function is minimized. At first,
the spatial coordinates of truss elements are assigned to input,
and the predicted outputs of the network are calculated by the
feedforward (FF) algorithm. Thereafter, our loss function is
designed based on these predicted values and physics laws
to guide the training. Next, the BP algorithm of the network
allowed to automatically calculate the sensitivity of the cost
function with respect to the parameters. Subsequently, the opti-
mizer relies on gradient estimates to adjust the weights and
biases of the network. The above all steps are repeated until
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Fig.2 Physics-informed neural energy-force networks framework for design optimization
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the minimum loss is achieved, and it is called the learning
process. And finally, the optimum weight of the structure cor-
responding to the NN’s optimal parameters is found as soon as
the training process ends without using any structural analyses.
The reliability, efficiency, and applicability of the proposed
model are also demonstrated through several examples for the
truss design under various constraints. The obtained results
showed that PINEFN not only saves a large computational cost
but also yields higher accuracy and faster convergence speed.
In addition, it does not use any structural analysis tools and
does not need to prepare the data in advance.

The rest of this study is structured as follows. Section 2
provides the theoretical formulation of the structural optimiza-
tion based on energy-force methods. Next, a physics-informed
neural energy-force network approach is suggested in Sect. 3.
In Sect. 4, several numerical examples are examined to dem-
onstrate the efficiency of the proposed method. Finally, crucial
conclusions are outlined in Sect. 5.

2 Structural optimization based
on energy-force methods

Optimization of structures is known as a complex task related
to the obtained structural response from numerical simula-
tions. And sizing optimization of truss structures is one of
these problems. Its main goal is to minimize the structural
weight while satisfying all design constraints as well as the
equilibrium equations simultaneously. Therein, the struc-
tural member’s cross-sectional areas are treated as continu-
ous design variables and confined within an acceptable range.

Fig.3 A fully-connected deep
neural network architecture

Input layer

The general mathematical model for the linear elastic struc-
ture based on principle of minimum potential energy can be
expressed as follows

3 my
Minimize =~ W(A) = Y A, X p,L;.
k=1 =1
subjected to %(A) =Ku-f=0, €h)
gj(A) <0, j=12,..,n,
low U —
A <A <AS, k=1,2,..n,

where W(.) is the weight of the truss structure; A, is the
cross-sectional area of the truss elements belonging to the
kth group which can range between Ai"w and AZ” ; n, denotes
the total number of groups in the structure; m, and n_ are the
number of members in the kth group and constraint func-
tions; p; and L; are the material density and length of the
ith member; I1, is the total potential energy; u and f are
the vector of displacements and external forces at nodes,
respectively; K denotes the stiffness matrix of structure; 8;
represents the jth constraint function including displacement
and stress. To obtain the constraints in Eq. (1), the impor-
tant thing that must be highlighted here is that the principle
of minimum potential energy is utilized to determine the
displacement field u concerning the equilibrium equations
and related BCs. And once it is found, the other structural
responses can be easily achieved by the constitutive equa-
tions. It should be noted that the first constraint related to
the first derivative of I1, to u is automatically satisfied and
ignored. Accordingly, in most of the structural optimization
problems in the existing literature, this approach is carried
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out by using the conventional FEA and incorporated into an
optimization algorithm.

As pointed out by Ohkubo et al. [42], it was obvious that
all structural behaviors obtained by using the principle of
minimum complementary energy were similar to the poten-
tial energy. According to this approach, the actual member
forces of trusses are first determined from the minimum
of complementary energy to satisfy all stated compatibil-
ity conditions. And then the displacement field, as well as
other responses, are easily calculated based on the obtained
reaction and member forces. Therefore, the size optimiza-
tion of truss structures based on the principle of minimum
complementary energy can be rewritten similarly to Eq. (1).
The derivative of I, to the displacement field is replaced
by the derivative of I, to the redundant force q. In order to
Castigliano’s second theorem, the complementary energy for
internal forces is minimum and satisfies the compatibility
conditions. Thus, its derivative concerning the unknown q
is defined as follows

aa‘:c (A) = (BTGB,)p + (BTGB, )q = 0. )
in which p(€ R) is the external load vector; q(€ R")
denotes the redundant force vector; G(€ R"+*"s) refers to the
diagonal flexibility matrix; BO(E R’"sx‘i”f) and B, (€ R™*")
are the generalized inverse and null matrices; r, m,, and n
are the number of total indeterminacies, the total number
of members and boundary conditions, and total number of
nodes of the d-dimensional truss structure, respectively. For
more detail detailed derivation of Eq. (2) based on the force
method, interested readers can consult Ref. [43]. And like-
wise to the previous method when the structural analysis is
available, given the fact that this constraint is always satis-
fied with equality for the minimum complementary energy
and can be ignored. Once the redundant force q is deter-
mined, the structural responses can be easily obtained from
kinematic relations.

Note that there is a small difference between the two
above approaches for the computational structural analy-
sis. In particular, the first one applied the FEA with dis-
placement as the primary unknown to achieve the mini-
mum potential energy. While the remaining one considered
the redundant force as the primary unknown of the force
method which is found from the minimum complemen-
tary energy. However, the above-mentioned approaches
are all based on the basic principle which required both the
optimization algorithm and the numerical solver. Therein,
the structural analysis is required for each iteration of the
optimization process. Despite its success in a wide range
of optimization problems, it still faces challenging issues
due to the increasing computational cost for the high-
dimensional problem.

To overcome the computing challenge, an alternative
paradigm based on the complementary energy and force
is developed for optimization of truss structures without
using any structural analyses. Its mathematical formulation
can be expressed as [44]

n, my
W) = kZI Ay 2oLy
= i=1

Z=(A. @) = (B]GB,)p + (B{GB,)q =0,

Minimize

subjected to

gj(A, qQ < 0, j=1 2,..,n,,
low up —

Ak SAksAk, k=1, 2, .., Ng,

qﬁ"w <gq, < q, =1, 2, ..,r.

3)
It is worth mentioning that this approach is quite different
comparing to the previous traditional methods for searching
the optimum weight of truss structures. More concretely,
there are three main differences between Eq. (3) and Eq.
(1) as below

(i) First, itis easily seen that the design variables of Eq.
(3) include the cross-sectional areas and redundant
forces, while the other methods are only the cross-
sectional area of the truss members as shown in Eq.
(1).

(i) Next, the first constraint automatically satisfies a
zero first derivative for the potential or complemen-
tary energies in Eq. (1) where the structural analysis
is carried out to estimate the structural responses.
Hence, it can be entirely ignored. On the contrary,
this characteristic does not exist in Eq. (3) due to
considering the redundant forces as the design vari-
ables.

(iii) Finally, the optimization algorithm and structural
analysis are required to achieve the optimal solution
for Eq. (1). And all the while, the approach based on
Eq. (3) only needs to be the optimization algorithm.

In order to tackle Eq. (3), a self-adaptive penalty function is
used to handle the constraint function through transforming
the constrained structural optimization problem to an uncon-
strained optimization one [45, 46]. Consequently, it is rewrit-
ten as follows

LA = [1+&(Ivl+0]” WA,
v(A.q) = (BIGB,)p + (B/GB,)q.

c= Zc’imax (0, g;(A, q)),
j=

Minimize

“

in which ¢ denotes the sum of the violated constraints; ¢,
and &, represent parameters to control the exploration and
exploitation rates of the design region. As suggested by Son-
mez [45] and Hasancebi [46], the parameter ¢, is set equal to
1, and the value of €, is self-adaptive based on the feedback
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information from the previous iteration and is expressed as
follows

| =D £6D feasible,
e = { (1/x)e, ! ! 5)

1 Kf(]l_]) if £07Y infeasible,

(lt) is the penalty coefficient at the rth iteration, and

is chosen 1 at the beginning of the iteration. k denotes
the learning parameter of e(l’), and is given by

where €
&0

k=1+ !

I > 1.01. (6)

n.

3 Physics-informed neural energy-force
network

In this section, the physics-informed neural energy-force
network is developed to perform optimization of truss struc-
tures. The whole schematic illustration, as shown in Fig. 2,
gives an overall view of the present approach. Different
from most existing works, the NN model with unsupervised
learning is designed to find the optimum weight of struc-
tures that it only relies on the knowledge of any physical
laws and doesn’t need any structural analysis. Note that for
the present approach, the design variables of the structural
optimization are the parameters of the network 8 including
weights and biases, instead of the cross-sectional areas of
truss members. According to the flow diagram, a fully con-
nected NN is set first up to perform the design optimization
of truss structures. At the start of the training run, all weights
and all biases were initialized with their values obey the
normal distribution in the range of [—1, 1]. The coordinates
of all truss members in the structure are employed as the
input training data, whilst the corresponding cross-sectional
areas and redundant forces are defined as the outputs of the
network (A, §) obtained by the FF process. Based on these
outputs, external forces, BCs, and physical laws, the self-
adaptive penalty function, including the objective, comple-
mentary energy, and constraints, is derived as the loss func-
tion which is minimized by tuning the network’s weights

Table 1 Hyperparameters fCVEor the benchmarks tested in this study

Problem Depth Width Optimizer Learning rate Epochs
10-bars 2 30 Adam 0.01 1000
17-bars 2 40 Adam 0.01 1000
200-bars 3 40 Adam 0.01 5000
25-bars 3 30 Adam 0.01 1000
72-bars 3 60 Adam 0.01 1000
120-bars dome 3 60 Adam 0.01 1000

@ Springer

and biases. And then BP algorithm of the network allows to
automatically calculate the sensitivity of the loss function to
the corresponding parameters, whereby they will be updated.
One epoch is an iteration of training that consists of pairs
of FF and BP. In order to carry out the training process, the
above operations are performed and repeated many times
until reaches the minimum loss function value correspond-
ing to the optimum weight of truss structures. In general,
the proposed approach consists of three main components,
namely training data, DNN, and loss function. The following
sub-sections and Algorithm 1 allow to represent in greater
detail the proposed methodology.

3.1 Training data

It is important to stress that, contrary to previous approaches
which utilized supervised learning framework, the model
presented here is designed based on the unsupervised learn-
ing algorithm. Hence, the training data only has the input
data, while the corresponding output values are not given.
In other words, the cross-sectional areas, redundant forces,
and the responses of the structure including stress, strain,
displacement, member force, etc. are not included in the
training data. It means that all training data of PINEFN
only contains a set of coordinates of all truss members. In
particular, the coordinates of the kth member that connects
the nodes ith and jth X(k, :) = [xi,yi,zi,xj,yj,zj] € R are
treated as a training data point which is used as the input val-
ues of the NN. Obviously, the whole training data X can be
easily collected from the geometric and connection informa-
tion of nodes. Furthermore, its size is small X(e Rva4) and
X(E IR’”XXG) for planar and space truss structures, respec-
tively. Here m, denotes the total number of truss members,
while 4 or 6 show the number of spatial coordinates for
2- or 3- dimensional truss. Due to the nature of the activa-
tion function, the input data is normalized to the interval of

ur09¢
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Fig.4 A 10-bar planar truss structure
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Table 2 Comparison of the obtained results for the 10-bar truss with the first loading condition

A; (in%) Schmit [7] Rizzi [4] Lee [10] Li[14] This study

PSO PSOPC HPSO DE PINEFN
A, 33.43 30.73 30.15 33.469 30.569 30.704 30.529 30.534
A, 0.1 0.1 0.102 0.11 0.1 0.1 0.100 0.101
A, 24.26 23.93 22.71 23.177 22974 23.167 23.216 23.208
Ay 14.26 14.73 15.27 15.475 15.148 15.183 15.200 15.230
As 0.1 0.1 0.102 3.649 0.1 0.1 0.100 0.100
Ag 0.1 0.1 0.544 0.116 0.547 0.551 0.555 0.551
A, 8.388 8.542 7.541 8.328 7.493 7.46 7.455 7.458
Ag 20.74 20.95 21.56 23.34 21.159 20.978 21.029 21.053
Ay 19.69 21.84 21.45 23.014 21.556 21.508 21.535 21.495
A 0.1 0.1 0.1 0.19 0.1 0.1 0.100 0.100
W, (Ib) 5089.00 5076.66 5057.88 5529.50 5061.00 5060.92 5060.86 5061.06
CVE,.x (%) 21.14 None 0.09 None None None None None
Times (s) - - - - - - 96.52 5.02

[-1, 1] to accelerate the learning process. Additionally, the
information to describe the problem, such as material, BCs,
external loads, number of total indeterminacies, and so on,
not included in the training data, but they were necessary to
put some restrictions on the output values as well as build-
ing the loss function of the network. Obviously, they can be
easily obtained before starting the training.

3.2 Feedforward

Firstly, a fully connected neural network with depth £, as
shown in Fig. 3, is designed to find the optimal truss struc-
ture. It consists of one input layer, one output layer, and
(¢ — 1) hidden layers. Therein, the first layer is known as the
input layer which has four or six neurons corresponding with
the coordinates of members for 2- or 3-dimensional truss,

respectively. The final layer is known as the output layer
with two neurons, which corresponds to the predicted cross-
sectional area and redundant force. And the other layers are
referred to as the hidden layers. Meanwhile, the number of
hidden layer and hidden neurons depend on the complex-
ity of the application. All neurons of the present layer are
connected to all units in the previous layer via the param-
eters of the network, which consists of weights and biases,
and their initial values 6, are randomly generated following
the normal distribution in the range of [-1, 1]. In addition,
Adam optimizer with its default parameters as suggested by
Kingma and Ba [47] was set up to perform the training task.

In general, the FF is the process of propagation of the
training data from the input layer to the hidden layers and
then to the output layer of the NN. Accordingly, the relation-
ship between the input and output values of each layer for
the kth truss member obtained by FF is expressed as follows

Table 3 Error of the constraints

. Elements Stress (ksi) Dofs Displacement (in)

for the 10-bar planar truss with

the first loading condition FEA PINEFN Error (%) FEA PINEFN Error (%)
1 6.6366 6.6366 0.0002 u, 0.1921 0.1921 0.0095
2 - 1.3002 - 1.2997 0.0398 \7 —2.0000 —2.0000 0.0002
3 — 8.5040 — 8.5040 0.0004 u, —0.5428 —0.5428 0.0004
4 — 6.5744 — 6.5744 0.0003 v, -1.9914 -1.9914 0.0002
5 24.9995 24.9993 0.0011 u; 0.2389 0.2389 0.0002
6 —0.2385 —0.2386 0.0058 V3 —0.7354 —0.7354 0.0002
7 18.4610 18.4609 0.0008 uy —0.3061 —0.3061 0.0004
8 — 6.8950 — 6.8950 0.0002 \ —1.6353 — 1.6353 0.0007
9 6.5879 6.5879 0.0000
10 1.8553 1.8554 0.0068
Max 24.9995 24.9993 0.0398 - 0.2389 0.2389 0.0095
Min — 8.5040 — 8.5040 0.0000 - —2.0000 —2.0000 0.0002
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Table 4 Standard errors (%) of

. B Activation Optimizers

optimal weight for the 10-bar

truss with respect to various functions Adam Adamw Adadelta Adagrad Adamax SGD ASGD

optimizers and activation

functions for the first load case Softmax 0.5781 0.2678 0.9666 5.5167 1.1592 12.0243 56.8574
Softplus 0.3242 0.3413 0.6172 0.8193 0.3717 0.9710 29.6784
Tanh 0.1425 0.1628 0.8713 1.3563 0.1969 2.3996 30.1295
Sigmoid 0.3545 0.3865 1.0425 1.3875 0.4594 15.0234 40.2913
ReLU 0.0043 0.3468 0.0221 0.0540 0.0212 0.6399 27.9569
LeakyReLU 0.0039 0.0052 0.0146 0.0421 0.0257 0.6212 27.7776

Tab.Ie 5 Sta.lndard errors (%) of Hidden Number of hidden neurons

optimal weight for the 10-bar

truss with respect to various layers 10 15 20 25 30 35 40 45 50

hidden layers and neurons for

the first load case 0.4407 03476 03284 03202 03262 03187 03174 03180  0.3179

0.0047  0.0073 03142 0.0048 0.0039 03141 03141 0.2220 0.3132

3 0.0763  0.0274  0.0173  0.0099  0.0288  0.3438  0.1320 0.3132  0.0086

11060 } 1
6400
10060} 6200 .
6000
9060 | .
) 5300
=
8060 5600 ,
=
5400 |
7060 [ ,
5200 | |
6060 L/ 0 500 1000 1500 2000+
5060! L ‘ ‘ ‘ ‘
0 2500 5000 7500 10000 12500 15000 17500

Number of generations/epochs

Fig.5 The weight convergence histories of the 10-bar truss obtained
using the PINEFN and DE for the first load case

input layer
hidden layers:

W = X(k, ) = [x.y2. %3] € R,
h' = £, (W"'ho=D + b") € R™,

for 1<n< (-1,
h’ =f, (W h“=D 4 b)

=[Aw 4], € R?,

output layer :

(7
where WU is the weight matrix; b" is the bias vector; my,
is the number of units in the kth hidden layer; f{.) denotes
the activation function, which allows the network to learn
about the complete relationship between the input and out-
put. There are several popular activation functions, for exam-
ple, Tanh, Sigmoid, ReLU, LeakyReLU, Softmax, Linear,
and so on. In this study, the softmax function is selected for
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the output layer, while the activation function of the hidden
layer is LeakyReLU.

From Eq. (7), it is clear that we can easily get the pre-
dicted output values including the cross-sectional areas
A(e R™s) and redundant forces (€ R"s) with respect to the
coordinates of other truss members in the training data X.
In fact, the total number of redundant fores r is less than
the number of truss members m,. Consequently, only first r
values of the predicted redundant force vector § are used to
build the loss function, while all predicted cross-sectional
areas are available. Obviously, this will not affect the per-
formance of the NN, because only the values used to design
the loss function allow tuning the parameters of the network.

3.3 Backpropagation & training

Next, the loss function which plays a role as an objective
function of the network is formulated based on the output
values from the FF phase. According to this approach, the
predicted cross-sectional areas and redundant forces are
expressed by the nodes’ coordinates and the parameters of
the network. And clearly, it based on the penalty function in
Eq. (4) is rewritten as follows

LX.0) = (1+&(V]+0)* W(A(X,O)), ®)
with
v(X,0) = (B'GB,)p + (BGB,)q(X.0),

©

o(X.) = é max (o, gj<A(x,a), (1(X,0)) )

As shown in Eq. (8), it is easily seen that the design vari-
ables are now the parameters of the network instead of the
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Table 6 Comparison of the obtained results for 10-bar planar truss with the second loading condition

A; (in%) Schmit [7] Rizzi [4] Lee [10] Li[14] This study
PSO PSOPC HPSO DE PINEFN
A, 24.29 23.53 23.25 22.935 23.743 23.353 23.528 23.731
A, 0.1 0.1 0.102 0.113 0.101 0.1 0.100 0.101
A, 23.35 25.29 25.73 25.355 25.287 25.502 25.280 25.238
Ay 13.66 14.37 14.51 14.373 14.413 14.25 14.375 14.218
A 0.1 0.1 0.1 0.1 0.1 0.1 0.100 0.100
Ag 1.969 1.97 1.977 1.99 1.969 1.972 1.970 1.975
A, 12.67 12.39 12.21 12.346 12.362 12.363 12.391 12.396
Ag 12.54 12.83 12.61 12.923 12.694 12.894 12.826 12.763
Ay 21.97 20.33 20.36 20.678 20.323 20.356 20.336 20.393
Ay 0.1 0.1 0.1 0.1 0.103 0.101 0.100 0.100
W, (Ib) 4691.84 4676.92 4668.81 4679.47 4677.70 4677.29 4676.93 4677.25
CVE,..x (%) None None 0.19 None None None None None
Times (s) - - - - - - 104.29 5.83
Table 7 Error of the constraints Elements Stress (ksi) Dofs Displacement (in)
for the 10-bar planar truss with
the second loading condition FEA PINEFN Error (%) FEA PINEFN Error (%)
1 6.4582 6.4582 0.0002 u; —0.0390 —0.0387 0.7538
2 —7.5425 —7.5399 0.0349 Vi —1.1022 —1.1023 0.0032
3 —9.7764 —9.7764 0.0002 u, —0.6071 —0.6071 0.0001
4 — 7.0867 — 7.0867 0.0000 vy —2.0000 —2.0000 0.0016
5 24.9969 24.9966 0.0011 uj 0.2325 0.2325 0.0002
6 24.9406 24.9396 0.0041 V3 —0.6574 —0.6574 0.0001
7 16.7409 16.7408 0.0009 uy —0.3520 —0.3520 0.0002
8 —5.9016 —5.9016 0.0001 \7 — 1.5573 —1.5573 0.0007
9 6.9875 6.9875 0.0000
10 10.6667 10.6674 0.0062
Max 24.9969 24.9966 0.0349 - 0.2325 0.2325 0.7538
Min - 9.7764 -9.7764 0.0000 - ~ 20000 ~ 20000 0.0001
10676} 9°00 ] y
A 100in ,_ 100in ., 100in ., 100in
2 4 s 6 9 I8 I
9676 | 6000 ,
)
o S6T6f 1 =
g 5500
§ 7676 | 1 X
6676 1 5000 L | 100 kips
5676/ / 0 500 1000 15‘00 2000+ Fig.7 A 17-bar planar truss structure
4676 N - - - - -
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 . .
Number of generations /epochs <104 cross-sectional areas as the conventional approach. Fur-

Fig.6 The weight convergence histories of the 10-bar truss obtained
using the PINEFN and DE for the second load case

thermore, it is worth mentioning that this function is built
relying on the physics laws and the information to define
the problem. Hence, the structural analysis are completely
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Fig.8 The weight convergence histories of the 17-bar truss obtained
using the PINEFN and DE

removed by our method, and only the neural network is used
to perform the structural optimization task. Instead of solv-
ing the structural optimization, our approach minimizes the

loss function to seek the optimal parameters of the network.
0" = argomin(ﬁ(X,ﬁ) ). (10)

In this work, Adam is a well-known gradient-based opti-
mizer which is used to perform the training. Hence, the

sensitivity analysis regarding computing the derivatives
of the loss function with respect to each of all parameters
V £(0) must be determined. As mentioned above, this is eas-
ily and automatically calculated by utilizing BP which is
a reverse mode of automatic differentiation and integrated
into the common neural network with the Python library.
For more details, interested readers are suggested to refer
to Ref. [48]. As a result, the network parameters at epoch
(t + 1) are adjusted as

(+1)
t+1 1- 2

(1- ﬂi’*“)( Vot

where m,; and v, are obtained by

m
0t+l =6,—n

- m))’ an
2

m,, =pm, + (1 - ﬂl)-v‘c(at)s

Vt+1 = ﬂ2vt + (1 - ﬂz)VL'(O,), (12)

in which @ is the trainable parameter vector of the network
that consists of weights and biases; m,, | and v, are the
first and second raw moment vectors which are controlled
by two exponential decay rates f;, f, € [0, 1); € denotes a
constant added to ensure numerical stability, and # is the
learning rate. In this study, their default values as suggested
by Kingma and Ba [47] were utilized to train the model.
Interested readers can refer to [47] for more details. Finally,
the above process which corresponded with steps 5-11 in

Table 8 Comparison of the

obtained results for the 17-bar A, (in?) Lee [10]  Li[14] Khot [2]  Adeli [12]  This study

planar truss PSO PSOPC  HPSO DE PINEFN
A, 15.821 15.766 15.981 15.896 15.93 16.029 15.920 15.906
A, 0.108 2.263 0.1 0.103 0.1 0.107 0.100 0.113
A, 11.996 13.854 12.142 12.092 12.07 12.183 12.075 12.068
Ay 0.1 0.106 0.1 0.1 0.1 0.11 0.100 0.100
As 8.15 11.356 8.098 8.063 8.067 8.417 8.070 8.074
Ag 5.507 3915 5.566 5.591 5.562 5.715 5.554 5.557
A, 11.829 8.071 11.732 11.915 11.933 11.331 11.936 11.917
Ag 0.1 0.1 0.1 0.1 0.1 0.105 0.100 0.100
Ay 7.934 5.85 7.982 7.965 7.945 7.301 7.940 7.949
A 0.1 2.294 0.113 0.1 0.1 0.115 0.100 0.103
A 4.093 6.313 4.074 4.076 4.055 4.046 4.055 4.061
A, 0.1 3.375 0.132 0.1 0.1 0.101 0.100 0.100
Aps 5.66 5.434 5.667 5.67 5.657 5.611 5.668 5.665
Ay 4.061 3.918 3.991 3.998 4 4.046 3.988 4.005
As 5.656 3.534 5.555 5.548 5.558 5.152 5.561 5.550
A 0.1 2314 0.101 0.103 0.1 0.107 0.101 0.104
Ay, 5.582 3.542 5.555 5.537 5.579 5.286 5.583 5.579
W, (Ib)  2580.81 272437 258285 2581.94 2581.89  2594.42 2581.89  2581.97
CVE,,.« 0.04 None None None None 1.69 None None
Times () - - - - - - 268.96 6.73
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Table 9 Error of the constraints

Elements Stress (ksi) Dofs Displacement (in)

for the 17-bar planar truss
FEA PINEFN Error (%) FEA PINEFN Error (%)

1 25.0262 25.0270 0.0029 u, —0.0834 —0.0834 0.0024

2 24.1879 24.1961 0.0337 V3 —0.2447 —0.2447 0.0214

3 —25.0193 —25.0187 0.0024 uy 0.0834 0.0834 0.0029

4 — 1.6089 —1.5939 0.9324 vy —0.2500 —0.2500 0.0009

5 24.9903 24.9884 0.0075 us —0.1668 —0.1668 0.0016

6 24.9983 24.9995 0.0049 Vs — 0.6669 — 0.6669 0.0015

7 —25.0254 -25.0252 0.0008 Ug 0.1667 0.1667 0.0023

8 3.4540 3.4381 0.4608 Ve —0.6554 —0.6555 0.0097

9 24.9810 24.9820 0.0041 u, —0.2501 —0.2501 0.0021

10 19.5849 19.6173 0.1657 \Z! —1.2027 —1.2030 0.0234

11 — 249757 —24.9781 0.0096 ug 0.2500 0.2500 0.0001

12 — 14.2641 — 14.1821 0.5746 Vg —1.2503 —1.2503 0.0006

13 24.9641 24.9623 0.0070 ug —0.3333 —0.3333 0.0007

14 —24.9688 — 24.9665 0.0092 Vg —2.0000 —2.0000 0.0003

15 —24.9889 — 24.9888 0.0001

16 —24.0933 —24.0958 0.0105

17 — 249873 — 249874 0.0004

Max 25.0262 25.0270 0.9324 - 0.2500 0.2500 0.0234

Min —25.0254 —25.0252 0.0001 - —2.0000 —2.0000 0.0001
Algorithm 1 was repeated until the stop condition was satis-  is trained, the optimum weight is found at the minimum of
fied. A pseudo-code of the training for the parameters tun-  the loss function corresponding to the optimal parameters

ing is summarized in Algorithm 1. And once the network  without using any structural analyses.

Algorithm 1: Optimization of truss structures using PINEFN framework
Input:

- Structure: geometry, material properties, external forces, BCs

- Network: number of hidden layers, hidden neurons, activation function, Adam
optimizer
Output: optimal parameters 6, optimum weight of truss structures
Collect the training data from the coordinates of truss members
Build a NN with uniformly distributed initial parameters 6, from [-1, 1]
Set the default values of Adam optimizer parameters [47]
while | VL (8)|| > 0.01 or Maxepoch is not reached do
Predict (A (X,0),q (X,0)) using the FF

6 Compute the weight W (A) of truss structure

B W N e

7 Evaluate the constraint functions g; (A, Q) and residual v (A7 Q) by Eq. (9)

based on the output values, physical laws, BCs, and external forces
8 Loss function L (6,) is estimated by Eq. (8)

9 g—é is calculated automatically by the BP algorithm

10 Update parameters 8,1 of the network by Eq. (11)

11 t=t+1

@ Springer
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| 4x240 in |

10x144 in

Fig.9 A 200-bar planar truss structure

4 Numerical experiments

In the following, several numerical examples are investigated
to demonstrate the efficiency of the presented approach for
solving structural optimization problems. For this purpose,
the obtained solutions will be compared with differential
evolution algorithm (DE) and other methods achieved in
the literature. In all examples, the LeakyReLLU and Softmax
are employed as the hidden and output activation functions,
respectively. On the other hand, the other hyperparameters
of the network for each problem which are found by Grid
search and by trial-error methods are listed in Table 1. Note
that the learning process is terminated when either the maxi-
mum number of epochs reaches or the norm of the gradient
value is less than 0.01 [28, 37].

@ Springer

In addition, the parameters of the DE algorithm are
selected as follows: population size 20, mutant factor F =
0.8, maximum number of evaluations 3000, crossover fac-
tor Cr = 0.9, and setting the value of convergence criteria to
10799, 23, 28]. Due to the DE algorithm’s stochastic nature,
the best solution to each problem is addressed by following
30 independent runs. All of the experiments were performed
on a personal desktop computer using Python software.

4.1 Ten-bar truss

A ten-bar planar truss structure, as illustrated in Fig. 4, is
examined as the first numerical example for design opti-
mization. Cross-sectional areas of members are considered
as design variables and their minimum values are specified
as 0.1 in?. The material density and Young’s modulus are
set as 0.1 Ib/in® and 10* ksi, respectively. The displacement
limits of +2.0 in are applied to all free nodes. The allow-
able stress for all elements is restricted to +25.0 ksi. In this
example, two load cases are considered as following: (1) the
first loading condition with P, = 100 kips and P, = 0; (2)
the second loading condition with P, = 150 kips and P, =
50 kips. The architecture (4-30-30-2) and parameters of the
network, as shown in Table 1, are employed to perform the
training process.

A comparison of the optimal solution obtained by this
study and previous works, including design variables, total
weight of the structure (W), maximum constraint violation
error (CVE), as well as computational time, is reported in
Table 2 for the first loading case. Therein, CVE is expressed
as follows

ngO,

5> 0. (13)

{ none
CVE,; =4 llsll
j Ngll
[a), 100%

where CVE; is the jth constraint violation error; g ; denotes
the jth constraint value; [A]; is the jth allowable displace-
ment or stress.

Firstly, it is easily seen that the obtained result of the
PINEFN (5061.06 1b) reveals a fairly good agreement with
the DE (5060.86 1b), HPSO (5060.92 Ib), and PSOPC
(5061.00 1b). Note that even though the lightest design
given by Lee (5057.88 Ib) violated the design constraints
(0.09%). Nevertheless, the PINEFN outperforms well-
known existing algorithms in term of the solution quality
as well as the computing times. More specifically, the pro-
posed approach (5.02 s) only spends one-nineteenth of the
computation costs of DE (96.52 s) to get the near-global
optimal solution as possible. In addition, all constraints
are satisfied without violation, and the weight error against
the DE is very small with only 0.0039%. This can easily
be explained by the fact that a sufficiently large number
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Table 10 Design variables of the 200-bar planar truss

Design  Member group Design  Member group

vari- vari-

ables ables

A 1,2,3,4 A 82, 83, 85, 86, 88, 89,91, 92, 103, 104, 106, 107, 109, 110, 112,
113

A, 5,8,11, 14,17 Ay 115, 116, 117, 118

A 19,20, 21, 23, 24 Ag 119, 122, 125, 128, 131

Ay 18, 25, 56, 63, 94,101, 132, 139, 170, 177 A 133, 134, 135, 136, 137, 138

As 26, 29, 32, 35, 38 Ay 140, 143, 146, 149, 152

Ag 6,7,9,10, 12, 13, 15,16, 27, 28, 30, 31, 33,34, 36, 37 Ay 120, 121, 123, 124, 126, 127,129, 130, 141, 142, 144, 145, 147,
148, 150, 151

A, 39,40, 41, 42 Ay 153, 154, 155, 156

Ag 43, 46,49, 52, 55 Ay 157, 160, 163, 166, 169

Ay 57,58, 59, 60, 61, 62 Ay 171,172,173, 174, 175, 176

A 64, 67,70,73,76 Ays 178, 181, 184, 187, 190

Ay 44,45, 47, 48, 50, 51,53, 54, 65, 66, 68, 69,71, 72, 74,75 Ay 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185,
186, 188, 189

A, 717,78,79, 80 Ay 191, 192, 193, 194

A 81, 84, 87, 90, 93 Axg 195, 197, 198, 200

Ay 95, 96, 97, 98, 99, 100 Ay 196, 199

As 102, 105, 108, 111, 114

of independent runs are demanded for the metaheuristic
algorithms due to their stochastic nature [4, 7, 10, 14].
Meanwhile, our training model relied on the gradient
descent algorithm, so it only requires one run time and
saves a massive amount of the computational cost. And no
structural analysis is of special importance here. In addi-
tion to evaluate the effect of the PINEFN, the constraint
values gained through this work are compared with the
exact values attained by FEA using the obtained optimal
solution reported in Table 3. Obviously, none of the stress
and displacement constraints are violated. Furthermore,
it can be observed that the structural responses acquired
by PINEFN are very close to FEA with the error less than
0.04%. Besides, the weight convergence histories of two
algorithms are illustrated in Fig. 5. Clearly, our procedure
converges very fast at the beginning, tends to a fairly sta-
ble performance at the epoch of 500 approximately, and
then arrives at the near-optimal solution only through 1000
epochs. More importantly, it works completely without
using FEA. By contrast, the DE algorithm converges very
slowly and demands a large number of FEA evaluations
(18,041) to reach the optimum weight.

According to evaluate the impact of various hidden acti-
vation functions and optimizers on the performance of the
network, a survey is carried out to determine the most suit-
able combination based on the network architecture (4-30-
30-2). Herein, the mean square error (MSE) of the optimum
weight between the PINEFN and DE is used as a standard
measurement tool. And the obtained results are summarized

in Table 4. Evidently, Adam and LeakyReLU are the best
optimizer and activation functions, respectively. Therein,
their combination yields the lowest MSE (0.0039%), so it
is chosen for the training phase. At the same time, the grid
search procedure is applied to select the number of hidden
neurons and layers. MSEs of the optimum weight are shown
in Table 5 for each case. From the data in this table, it can be
seen that increasing the number of hidden neurons and layers
cannot always improve the accuracy of the model. In this
example, the network architecture with two hidden layers
and thirteen neurons is the most suitable with the smallest
MSE (0.0039%).

For case 2, the optimal results obtained by PINEFN, and
previous works are illustrated in Tables 6, 7 and Fig. 6. Simi-
larly, in case 1, the optimum weight found by the PINEFN
(4677.25 1b) is close to Rizzi [4](4676.92 1b), DE (4676.93
Ib), and smaller than the other studies (Schmit [7]: 4691.84
Ib; PSO [14]: 4679.47 1b; PSOPC [14]: 4677.70 lb; and
HPSO [14]: 4677.29 1b). Again, our framework takes only
5.83 s, while DE requires 104.29 s to get as accurate solu-
tions as possible. And clearly, it saves more than 17 times
the computational cost. As can be seen from the data of
Table 7, it is obvious that all constraints are not violated
and the largest error value (0.7538%) is less than 1%. Again,
PINEFN can achieve comparable accuracy compared to
traditional methods. In addition, PINEFN converges very
quickly to the optimal solution, while the DE is still a long
way from the desired value.
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Table 11 Optimization results obtained for the 200-bar planar truss

A; (in%) Lee [12] Kaveh [20] Lamberti [49] Degertekin [11] Degertekin [22] Pierezan [19] Mai [28] PINEFN
DE DUL
A, 0.1253 0.1033 0.1468 0.150 0.146 0.1390 0.1206 0.1183 0.1032
A, 1.0157 0.9184 0.9400 0.946 0.941 0.9355 0.9345 0.9907 0.9470
As 0.1069 0.1202 0.1000 0.101 0.100 0.1000 0.1168 0.1142 0.1158
Ay 0.1096 0.1009 0.1000 0.100 0.101 0.1000 0.1000 0.2323 0.1111
As 1.9369 1.8664 1.9400 1.945 1.941 1.9355 1.9292 1.9580 1.9501
Ag 0.2686 0.2826 0.2962 0.296 0.296 0.2909 0.2870 0.2906 0.2977
A, 0.1042 0.1000 0.1000 0.100 0.100 0.1000 0.1102 0.1624 0.1229
Ag 2.9731 2.9683 3.1042 3.161 3.121 3.0816 3.0780 3.1520 3.1354
Ay 0.1309 0.1000 0.1000 0.102 0.100 0.1000 0.2074 0.1381 0.1036
A 4.1831 3.9456 4.1042 4.199 4.173 4.0816 4.0783 4.1834 4.1312
Ay, 0.3967 0.3742 0.4034 0.401 0.401 0.3967 0.4329 0.3844 0.4214
A, 0.4416 0.4501 0.1912 0.181 0.181 0.2959 0.1546 0.2115 0.1057
Apz 5.1873 4.9603 5.4284 5.431 5.423 5.3854 5.3500 5.4466 5.4590
Ay 0.1912 1.0738 0.1000 0.100 0.100 0.1000 0.1027 0.1273 0.1056
Ajs 6.2410 5.9785 6.4284 6.428 6.422 6.3853 6.3502 6.4490 6.4572
A6 0.6994 0.7863 0.5734 0.571 0.571 0.6332 0.5636 0.5317 0.5505
A 0.1158 0.7374 0.1327 0.156 0.156 0.1842 0.5160 0.2150 0.1232
Ajg 7.7643 7.3809 7.9717 7.961 7.958 8.0396 7.9508 8.0113 7.9973
Ay 0.1000 0.6674 0.1000 0.100 0.100 0.1000 0.1017 0.1434 0.1391
Ay 8.8279 8.3000 8.9717 8.959 8.958 9.0395 8.9503 8.9967 8.9847
Ay, 0.6986 1.1967 0.7049 0.722 0.720 0.7460 0.8932 0.7054 0.7276
Ay 1.5563 1.0000 0.4196 0.491 0.478 0.1306 0.1525 0.2450 0.2385
Ay, 10.9806 10.8262 10.8636 10.909 10.897 109114 11.0423 10.8275 10.8581
Ay 0.1317 0.1000 0.1000 0.101 0.100 0.1000 0.1000 0.1266 0.1680
Ays 12.1492 11.6976 11.8606 11.985 11.897 119114 12.0423 11.8557 11.8564
Ay 1.6373 1.3880 1.0339 1.084 1.080 0.8627 0.9196 0.8580 0.9799
Ay, 5.0032 4.9523 6.6818 6.464 6.462 6.9169 6.7136 6.8944 6.6773
Ay 9.3545 8.8000 10.8113 10.802 10.799 10.9674 10.7305 11.1690 109118
Ay 15.0919 14.6645 13.8404 13.936 13.922 13.6742 13.8833 13.6032 13.7673
W, b)) 25447.10  25156.5 25445.63 25542.5 25488.15 25450.18 25564.99 2554790 25436.49
CVE, .o« 3.69 9.97 0.071 None None None None None None
Times (s) — - - - - - 3553.64 1305.27 100.91

4.2 Seventeen-bar truss

A seventeen-bar planar truss structure is investigated as the
second example for size optimization. The geometry, load-
ing, element representation, and boundary condition are
schematized in Fig. 7. The linear elastic modulus and mate-
rial density are 30,000 ksi and 0.268 Ib/in?, respectively.
Cross-sectional areas of members are considered as design
variables. All displacement of nodes are restricted to +2.0
in, and stress limitations of members +50 ksi were imposed
on all members. The minimum cross-sectional areas are set
at 0.1 in. The network architecture (4-40-40-2) is used to
train this problem with 1,000 epochs.

As the first presented example, the optimal solutions
achieved by this study in comparison with other works are
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tabulated in Table 8. It is obvious that the optimum weight
found by the PINEFN (2581.97 1b) agrees well with Khot [2]
(2581.89 1b), DE [2] (2581.89 1b), and HPSO [14] (2581.94
Ib) without violating constraints. However, it is clear that our
model outperforms the metaheuristic algorithms in terms
of computation times. In particular, its computation cost
(6.73 s) reduces more than 39 times compared with the DE
(268.96 s). All constraints and their error are summarized
in Table 9 which shows a comparison of PINEFN and FEA
using the obtained optimal cross-sectional areas. And it is
easily seen that all the optimized displacements and stresses
are free from any violations of constraints. In addition, the
overall structural responses found by the PINEFN are simi-
lar to that of the FEA with the error less than 1%. A com-
parison of the convergence history between the proposed
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Table 12 Error of the constraints for the 200-bar planar truss

Elements Stress (ksi)
FEA PINEFN Error (%)
17 0.0000 0.0000 1.2367
19 0.0000 0.0000 0.9818
41 —0.3415 —0.3418 0.0774
64 —9.6038 —9.6038 0.0000
86 9.4741 9.4741 0.0000
101 —9.9995 —9.9994 0.0009
121 9.9782 9.9783 0.0017
122 9.9070 9.9067 0.0028
157 9.9770 9.9768 0.0017
173 — 10.0000 — 10.0000 0.0002
Max 9.9782 9.9783 1.2367
Min — 10.0000 — 10.0000 0.0000
x10°
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Fig. 10 The weight convergence histories of the 200-bar truss
obtained using the PINEFN and other algorithms

method and DE is illustrated in Fig. 8. Clearly, the PINEFN
converges more rapidly than the DE. It only requires 1,000
epochs without FEA, while the DE uses 35,761 FEA simula-
tions to gain the near-global optimal weight.

4.3 200-bar planar truss

The next optimization problem deals with the 200-bar pla-
nar truss shown in Fig. 9. All members are divided into 29
groups corresponding to the design variables which are indi-
cated in Table 10. The material density and linear elastic
modulus are 0.283 1b/in® and 30,000 ksi for all elements.
This structure is subjected to stress limitations of +10 ksi.
The minimum design variable is 0.1 in?. It is designed for
three loading cases: 1) 1 kip acting in the positive direction
of the x-axis at nodes 1, 6, 15, 20, 29, 34, 43, 48,57, 62 and
71; (2) 10 kip applying in the negative direction of the y-axis
atnodes 1, 2, 3,4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19,
20,22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43,
44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64,
66, 68,70, 71, 72,73, 74 and 75; (3) including conditions (1)
and (2) acting together. In this example, the network configu-
ration with 3 hidden layers, 40 neurons per hidden layer, and
5,000 epochs are carried out to perform the training process.

The optimum weight and design variables are reported in
Table 11. It is worth mentioning that the PINEFN attains the
lightest design overall because Kaveh’s [20] lighter design
violates the design constraints. The results shown that our
model (25436.49 1b) can decrease the structural weight by
about 13 1b compared with the second best weight obtained
by Pierezan [19] (25450.18 Ib). It is interesting here that
PINEFN outperforms the state-of-the-art unsupervised
approach DUL (25547.90 1b) by Mai [28] in terms of both
the quality of solution and computation cost. It is worth not-
ing that, for the DUL, the neural network as the optimal tool
directly participated in the optimization process, but FEA is
still required to determine the structural responses. Mean-
while, this numerical simulation was completely removed
by PINEEN. Clearly, the computation time of PINEFN was
reduced by more than 13 and 35 times compared with the
DUL and DE, respectively. Furthermore, this leads to a sig-
nificant reduction in computational effort with the increas-
ing structural complexity. Several maximum and minimum
values of constraints as well as their error are illustrated
in Table 12. It is easily seen that the stresses found by
the PINEFN agree well with the FEA and satisfy allow-
able stress constraint. Note that although the error of the
17th member (1.2367%) is a little bigger than 1%, its stress
value (0.0000 ksi) is very small compared to the the stress

Table 13 Loading conditions

. Node Case 1 Case 2
for the 25-bar space truss (kips)
F, F, F, F, F, F,
1 0.0 20.0 -5.0 1.0 10.0 -0.5
2 0.0 —-20.0 -50 0.0 10.0 -0.5
3 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.0 0.0 0.5 0.0 0.0
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Table 14 Stress limitation for the 25-bar space truss

A, (in?) Allowable compressive stress ~ Allowable
(ksi) tension stress
(ksi)
A 35.092 40.0
Ay-As 11.590 40.0
Ag-Ay 17.305 40.0
A-Ag 35.092 40.0
Aj-Ags 35.092 40.0
AAgy 6.7590 40.0
AjgAy 6.9590 40.0
Asy-Ass 11.082 40.0

Fig. 11 A 25-bar space truss structure

Table 15 Optimization results

obtained for the 25-bar space

truss

@ Springer

limitation (10 ksi). The convergence histories in Fig. 10 pro-
vide a more detailed view of three different methods. As
can be seen on the plot, the convergence rates of PINEFN
and DUL are similar in shape and rapidly decrease at the
beginning. It can be easily explained by the fact that both
approaches utilized the neural network based on the gradi-
ent descent algorithm. However, the proposed method con-
verged better than the DUL at the training end. And this
difference comes from the following reasons: (i) The sen-
sitivity of the DUL is calculated by the BP and automatic
differentiation tool JAX, while the PINEFN only uses the
BP; (ii) the structural responses obtained by the approximate
solution of the FEA for the DUL whereas they are directly
determined from the output values of the network for the
present method. And this example is no exception to the DE
algorithm which is the slowest convergence rate.

4.4 25-bar space truss

A twenty five-bar spatial truss, as shown in Fig. 11, is exam-
ined as the next design optimization with stress and displace-
ment constraints. The modulus of elasticity is 10,000 ksi
and the density is 0.1 Ib/in? for all members. Two loading
cases given in Table 13 are considered for this structure.
All members are categorized into 8 groups corresponding
to the design variables as listed in Table 14. All displace-
ments of nodes are restricted in the interval [- 0.35, 0.35] in.
In addition, the allowable stresses of members are listed in
Table 14. To find the optimum weight, the network configu-
ration shown in Table 1 is used to train the model.

As previously investigated examples, the results obtained
by the presented work and the other algorithms recently pub-
lished in the literature are summarized in Table 15. It is
obvious from the data in this table that the optimum design
obtained by PINEFN (545.22 1b) shows a strong agreement

A, (in?)  Lee[10] Li[l4] Kaveh[20] Degertekin[22] Mai [28] Camp [21] PINEFN
DE DUL
A, 0.047 0.010  2.662 0.0100 0.0100 0.0131 0.010 0.0127
Ay-As 2.022 1.970  1.993 2.0712 1.9834 19515 2.092 1.9809
Ag-Ay 2.950 3.016 3.056 2.9570 2.9984 29662 2.964 3.0039
ArAy 0.010 0.010  0.010 0.0100 0.0100 0.0125 0.010 0.0112
AyAj, 0.014 0.010  0.010 0.0100 0.0100 0.0128 0.010 0.0114
AA 0.688 0.694  0.665 0.6891 0.6864 0.6968 0.689 0.6865
AgAy, 1.657 1.681 1.642 1.6209 1.6776  1.7260 1.601 1.6771
Ayy-Ays 2.663 2.643  2.679 2.6768 2.6576 2.6430 2.686 2.6560
W, (Ib) 54438 54519 545.16 545.09 545.16 545.71 545.38 545.22
CVE,.. 0.206 None 2.06 None None None  None None
Times (s) — - - - 104.07 4947 - 6.68
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Table 16 Error of the

. Elements Stress (ksi) Dofs Displacement (in)
constraints for the 25-bar space

truss FEA PINEFN Error (%) FEA PINEFN Error (%)

1 5.2070 5.2056 0.0263 u, —0.0195 —0.0195 0.0263

2 —7.0015 —7.0016 0.0026 v, 0.3500 0.3500 0.0004

3 6.9434 6.9434 0.0000 W, —0.0289 —0.0289 0.0045

6 —6.5914 —6.5913 0.0009 u, 0.0195 0.0195 0.0263

7 4.8451 4.8451 0.0010 \D —0.3500 —0.3500 0.0004

10 - 1.7707 - 1.7702 0.0273 Wy —0.0289 —0.0289 0.0045

12 —1.8416 —1.8410 0.0323 uj 0.1116 0.1116 0.0025

14 —2.6125 —2.6124 0.0018 V3 —0.0403 —0.0403 0.0046

15 1.0157 1.0158 0.0100 W3 —0.1000 —0.1000 0.0008

18 5.3284 5.3285 0.0018 uy 0.0978 0.0978 0.0017

19 —6.9577 —6.9575 0.0015 vy 0.0270 0.0270 0.0065

22 — 1.1649 — 1.1649 0.0009 Wy 0.0573 0.0573 0.0034

Max 6.9434 6.9434 0.0323 - 0.3500 0.3500 0.0263

Min —7.0015 —7.0016 0.0000 - —0.3500 —0.3500 0.0004
1545 | _‘DE ] the DE and DUL. It only requires 1000 epochs, while the
- — -DUL DUL and DE require 1500 and 8480 times of linear analysis.

——PINEFN
13451 1 4.5 72-bar space truss

= 1145 i The next example deals with the design of 72-bar four-level
;‘i 550 T ‘ ‘ skeletal tower, and the cross-sectional areas are categorized
g ous 548 L‘I _________ 1 into 16 groups as illustrated in Fig. 13. All members are
° 546 - ‘ | made of material having density of 0.1 1b/in?, elasticity mod-
0 500 1000 1500 ulus of 10,000 ksi, and allowable stress of +25 ksi. In addi-
745 J tion, all displacements of nodes are restricted to +0.25 in. It
is subjected to two loading conditions, as listed in Table 17.
| Therein, the minimum design variables are defined as 0.1

545 . . . . . . .
0 2000 4000 6000 8000 10000 12000 14000 16000

Number of generations/epochs

Fig. 12 The weight convergence histories of the 25-bar truss obtained
using the PINEFN and other algorithms

with Degertekin [22] (545.09 1b), DE [28] (545.16 1b), Li
[14] (545.19 Ib), and smaller than the other studies (DUL
[28]: 545.71 1b; Camp [21]: 545.38 1b). Although the
obtained results by Lee [10] (544.38 1b) and Kaveh [20]
(545.16 1b) are relatively lighter than our method, the design
constraints are violated. Furthermore, our model saved more
than 15 and 7 times the computation cost compared to DE
and DUL, respectively. Table 16 shows several constraints
and their error with the FEA. Clearly, no any violations of
constraints are observed here. In addition, the constraint
error against to the FEA is less than 0.4%. And this once
again proves the efficiency of the proposed work. A compari-
son of the convergence curve between the PINEFN, DUL,
and DE is illustrated in Fig. 12. It is easily seen that the pro-
posed framework always converges much more rapidly than

in? and 0.01 in? for cases 1 and 2, respectively. A network
architecture with three hidden layers, 60 neurons per hidden
layer, and 1,000 epochs is the finest performance for this
application.

Tables 18 and 20 provide a comparison between the
obtained result of the PINEFN and other available algo-
rithms in the literature for the optimal solution. In both
cases, it is easily seen that the PINEFN found the lightest
design with the least time and effort overall without violating
constraints. More specifically, for the first case, it only takes
8.93 s to gain the optimal solution, while DUL and DE need
63.71 s and 488.14 s. Whereas its computational overhead
(18.46 s) is 129 times less than that of the DE (2410.19 s) for
the second case. Therefore, the present approach has proven
again to be the most efficient for improving accuracy and
reducing the computational effort. Besides, Tables 19 and 21
provide comparisons of constraints found by the PINEFN
and FEA using the obtained optimal solution. As the previ-
ously presented examples, the constraint results agree well
with the FEA with the error less than 0.4%. Finally, Figs. 14
and 15 depict the weight convergence histories of the present
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Fig. 13 A 72-bar space truss

structure
g
g
X
X
Table 17 Loading condition.s Node Case 1 Case 2
for the 72-bar space truss (kips)
F, F F, F, F
17 5.0 5.0 -5.0 0.0 0.0 -5.0
18 0.0 0.0 0.0 0.0 0.0 -5.0
19 0.0 0.0 0.0 0.0 0.0 -50
20 0.0 0.0 0.0 0.0 0.0 -5.0
method, DUL, and DE. As the previously discussed exam- 0" =0.60, for o,>0
ples, the convergence speed of the learning process is faster G{l for 6, <0 (14
L

than the other studies, and the optimal design is found only
after 1,000 epochs.

4.6 120-bar dome truss

To demonstrate the practical capability of the PINEFN, a
120-bar dome truss structure was considered the last optimal
design problem. Its configuration and dimensions can be
found in Fig. 16. As shown in this plot, the cross-sectional
areas of members, which are design variables, are classified
into seven groups. The density, elasticity modulus (E), and
yield stress (o) of the steel material for all members are
taken as 0.288 1b/in3, 30,450 ksi, and 58.0 ksi, respectively.
According to the AISC ASD (1989) [53], the allowable ten-
sile and compressive stresses are estimated as follows:

@ Springer

as)
where A; denotes the slenderness ratio (4, = kL,/r;); L; is
the member length; k is the effective length factor; r; is the
radius of gyration (r; = aAf.’); a and b are the constants that
depend on the types of section of the members, and pipe
section, with values 0.4993 and 0.6777, are used for bars,
respectively; C. expresses the slenderness factor splitting
the elastic and inelastic buckling regions (C. = V272E/ o).
The system is subjected to vertical loads in the negative
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Table 18 Optimization results obtained for the 72-bar space truss (Case 01)

A; (in%) Lee [10] Camp [21] Li[l4] Kaveh[20] Degertekin [22] Bekdas[50] Ehsan[51] Mai [28] PINEFN
DE DUL
A-A, 1.790 1.8577 1.857 1.9042 1.9064 1.8758 1.9298 1.8356 1.8606 1.8570
As-Ap, 0.521 0.5059 0.505 0.5162 0.5061 0.5160 0.5090 0.5359 0.5008  0.5047
AjAgg 0.100 0.1000 0.100 0.1000 0.1000 0.1000 0.1000 0.1002  0.1015  0.1000
AAjg 0.100 0.1000 0.100 0.1000 0.1000 0.1000 0.1000 0.1001  0.1012  0.1000
Ajg-Ay, 1.229 1.2476 1.255 1.2582 1.2617 1.2993 1.2467 1.2991 12635 1.2542
Ays-Ay 0.522 0.5269 0.503 0.5035 0.5111 0.5246 0.5128 0.4959 0.5061  0.5037
Az -Ay, 0.100 0.1000 0.100 0.1000 0.1000 0.1001 0.1000 0.1001  0.1014  0.1000
Ass-Agg 0.100 0.1012 0.100 0.1000 0.1000 0.1000 0.1000 0.1007  0.1010  0.1000
As-Ay 0.517 0.5209 0.496 0.5178 0.5317 0.4971 0.5298 0.4759 04971 0.4954
AyAyg 0.504 0.5172 0.506 0.5214 0.5159 0.5089 0.5172 0.5140 0.5078 0.5078
Auo-Asy 0.100 0.1004 0.100 0.1000 0.1000 0.1000 0.1000 0.1000  0.1018  0.1002
Asz-Asy 0.101 0.1005 0.100 0.1007 0.1000 0.1000 0.1000 0.1043  0.1032  0.1004
Ass-Asg 0.156 0.1565 0.100 0.1566 0.1562 0.1575 0.1564 0.1002  0.1003  0.1000
Asg-Ags 0.547 0.5507 0.524 0.5421 0.5493 0.5329 0.5440 0.4932 0.5186 0.5223
Ag-Agy 0.442 0.3922 0.400 0.4132 0.4097 0.4089 0.4106 0.3840 0.4013 0.3984
Aq-Aqy 0.590 0.5922 0.534 0.5756 0.5698 0.5731 0.5624 0.5658  0.5375 0.5356
W, (Ib)  379.27 379.85 369.65  379.66 379.63 379.10 379.65 37030 370.04  369.66
CVE,.ux 0.218 None 39.075 None None None None None None None
Times (s) - - - - - - - 488.14  63.72 8.93
Table 1_9 Error of the Elements Stress (ksi) Dofs Displacement (in)
constraints for the 72-bar planar
truss (Case 01) FEA PINEFN Error (%) FEA PINEFN Error (%)
16 0.2043 0.2041 0.0937 us 0.0173 0.0173 0.0011
21 —3.8084 —3.8084 0.0001 Ug 0.0400 0.0400 0.0131
43 —2.4993 —2.4993 0.0002 Ve 0.0400 0.0400 0.0131
45 —2.4993 —2.4993 0.0002 Wg 0.1209 0.1209 0.0012
49 4.1340 4.1327 0.0317 Vo 0.1209 0.1209 0.0012
52 4.1340 4.1327 0.0317 Wy —0.0751 —0.0751 0.0055
54 5.4555 5.4538 0.0320 us —0.1168 —-0.1167 0.0399
55 —23.8231 —23.8151 0.0336 u; —0.1168 —-0.1167 0.0399
56 0.2181 0.2176 0.2371 Vi7 0.2500 0.2500 0.0018
57 —7.1948 —7.1925 0.0317 Wiq 0.2500 0.2500 0.0018
58 0.2181 0.2176 0.2371 U9 —0.1183 —0.1183 0.0081
60 —5.6034 —5.6029 0.0095 Vio 0.2133 0.2133 0.0031
Max 5.4555 5.4538 0.2371 - 0.2500 0.2500 0.0399
Min —23.8231 —23.8151 0.0001 - —0.1183 —0.1183 0.0011

direction of the z-axis which are 13.49 kips at node 1, 6.744
kips at nodes 2-13, and 2.248 kips at nodes 14-37. In addi-
tion to the stress constraints, the vertical displacement of
free nodes under this loading is limited to 0.1969 in. The
minimum values of the design variables are 0.775 in. To

reach the goal, a network (4-60-60-60-2) with 1,000 epochs
is chosen to perform the training.

A comparison of the results obtained by the present
approach and other methods is reported in Tables 22 and
23. As expected, our obtained result (32,505.93 1b) is much
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Fig. 14 The weight convergence histories of the 72-bar truss obtained
using the PINEFN and other algorithms for the first load case

better than other studies (Kaveh [15]: 33,250.05 Ib; Tala-
tahari [16]: 33,251.22 1b; Adil [54]: 33,249.75 1b) without
violating constraints. Furthermore, the PINEFN obtained the
minimum weight only after 20.89 s, while the DE algorithm

gained the same weight (32,499.65 1b) with 2,311.08 s. Once
again, our model saves a massive amount of computational
effort, but yet still delivering high-quality optimal solutions,
and the error constraints of PINEFN are less than 0.01%. In
addition, a comparison of the convergence rates is shown
in Fig. 17. The mass of structures rapidly decreases in the
first 100 epochs and finds the solution only through 1,000
epochs. Whereas the DE algorithm is still a long way from
the target value. The above results have proven the efficiency
and robustness of the proposed approach for the structural
optimization without any numerical simulations.

5 Conclusions

In this article, a physics-informed neural energy-force
network framework has been successfully developed for
solving the design optimization of truss structures. Its
outstanding characteristic is that the structural analysis is
purely removed during the optimization process, and only
the neural network is built based on the physics laws to
find the optimal structure. Herein, the self-adaptive pen-
alty function, known as the loss function, is derived based

Table 20 Optimization results

obtained for the 72-bar space A, (in?) Adeli [52] Adeli [31] Sarma [13] Lee [10] Li[14] This study
truss (Case 02) DE PINEFN

A-Ay 2.0259 2.755 1.732 1.963 1.907 1.8909 1.8345
As-Ap, 0.5332 0.51 0.522 0.481 0.524 0.5195 0.5203
AjAjg 0.0100 0.01 0.01 0.01 0.01 0.0100 0.0100
Aj-Arg 0.01 0.01 0.013 0.011 0.01 0.0100 0.0101
Ajg-Ay, 1.157 1.37 1.345 1.233 1.288 1.2914 1.3136
Ayr-Ay 0.569 0.507 0.551 0.506 0.523 0.5199 0.5176
As-Agy 0.01 0.01 0.01 0.011 0.01 0.0111 0.0100
Ass-Asg 0.01 0.01 0.013 0.012 0.01 0.0185 0.0109
Asr-Ay 0.514 0.481 0.492 0.538 0.544 0.5225 0.5214
Ay-Ayg 0.479 0.508 0.545 0.533 0.528 0.5187 0.5188
Aug-Asy 0.01 0.01 0.066 0.01 0.019 0.0100 0.0101
Asr-Asy 0.01 0.064 0.013 0.167 0.02 0.1092 0.1014
Ass-Asg 0.158 0.215 0.178 0.161 0.176 0.1769 0.1681
Asg-Ag 0.55 0.518 0.524 0.542 0.535 0.5361 0.5377
Agr-Aqg 0.345 0.419 0.396 0.478 0.426 0.4491 0.4527
Aq-Aq, 0.498 0.504 0.595 0.551 0.612 0.5788 0.5838
W, (Ib) 379.3 376.5 364.4 364.33 364.86 365.30 364.05
CVE,, .« - - - - - None None

Times (s) - - - - - 2410.19 18.46
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Table 21 Error of the

. Elements Stress (ksi) Dofs Displacement (in)
constraints for the 72-bar space
truss (Case 02) FEA PINEFN Error (%) FEA PINEFN Error (%)
2 —0.9253 —0.9253 0.0001 ug —0.0056 —0.0056 0.0001
4 —0.9253 —0.9253 0.0001 Uy —0.0232 —0.0232 0.0066
34 —2.5996 —2.5996 0.0001 U5 —0.0771 —0.0771 0.0023
39 —5.1629 —5.1630 0.0019 Vis 0.1440 0.1440 0.0001
49 4.9770 4.9775 0.0091 W5 0.1440 0.1440 0.0001
50 —0.0569 —0.0571 0.3693 Uy —0.0783 —0.0783 0.0017
51 —0.0569 —0.0571 0.3693 Vi7 0.2500 0.2500 0.0011
52 4.9770 4.9775 0.0091 Wiq 0.2500 0.2500 0.0011
53 —-0.5119 —0.5115 0.0718 ug —0.0267 —0.0267 0.0091
54 5.4321 5.4320 0.0023 Uy -0.1059 —0.1059 0.0007
55 — 16.8499 — 16.8501 0.0015 Vig 0.2115 0.2115 0.0004
57 —4.7969 —4.7967 0.0037 Uy —0.0267 —0.0267 0.0091
Max 5.4321 5.4320 0.3693 - 0.2500 0.2500 0.0091
Min — 16.8499 —16.8501 0.0001 - —0.1059 —0.1059 0.0001
1960 | 1 I 984.24 in |
1560 |
= _
5 1160 ]
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e “
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Fig. 15 The weight convergence histories of the 72-bar truss obtained
using the PINEFN and DE for the second load case

on the weight, complementary energy, and constitutive
equations. Accordingly, the optimum weight of the struc-
ture is found at the end of the training when achieving the
minimum loss. The robustness, efficiency, and reliability
of the proposed framework are demonstrated through sev-
eral benchmarks for size optimization of truss structures.
Numerical results have indicated that the optimum weight
obtained by this study outperforms previously released
works in terms of the quality solution, convergence speed,
and computational cost. Furthermore, the PINEFN is also
significant because we can easily perform the structural
optimization without using any structural analyses. In
addition, one of the interesting things about this para-
digm is that its learning possibility only relies upon the
set of nodal coordinates which are known as the input data.

157.48 in

118.11 in

Fig. 16 A 120-bar dome truss structure

Hence, the obtained results as well as the whole training
data independent of the sampling techniques. Besides, the
sensitivity analyses become easy and simple to implement
by employing the automatic differentiation. In light of the
above outstanding features, it is promising to offer a new
route without using numerical solvers to handle complex
issues in structural optimization.
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Table 22 Optimization results obtained for the 120-bar dome truss

A; (in%) Kaveh [17]  Kaveh [55] Kaveh [56]  Talatahari [16] Kaveh [18] Kaveh [15]  Adil [54] This study
DE PINEFN
A, 3.095 3.027 3.0244 3.0244 3.0241 3.0242 3.0241 1.9124 1.9171
A, 14.405 14.606 14.7168 14.7804 14.7809 14.6893 14.7826 14.8834 14.9284
A, 5.02 5.044 5.08 5.0567 5.0522 5.0882 5.0512 5.7567 5.7528
Ay 3.352 3.139 3.1374 3.1359 3.1369 3.1392 3.137 2.5652 2.5667
As 8.631 8.543 8.5012 8.483 8.5004 8.5164 8.4981 10.0474 10.0309
Ag 3.432 3.367 3.3019 3.3104 3.2888 3.2857 3.2916 3.5773 3.5785
A, 2.499 2.497 2.4965 2.4977 2.4969 2.4964 2.4968 1.9795 1.9759
W, (Ib)  33,248.90 33,251.90 33,250.42 33,251.22 33,250.05 33,250.01 33,249.75  32,499.65 32,505.93
CVE,.ux - - - - - - - None None
Times (s) - - - - - - - 2311.08 20.89
Table Zj,’ Error of the Elements Stress (ksi) Dofs Displacement (in)
constraints for the 120-bar dome
truss FEA PINEFN  Error (%) FEA PINEFN Error (%)
1 —2.0933 —2.0933 0.0011 w, — 0.19689 —0.19690 0.0003
13 —2.2703 —2.2703 0.0002 Wy —0.19685 — 0.19686 0.0007
25 —2.2676 —2.2676 0.0002 Wiy 0.01774 0.01774 0.0038
37 —2.2043 —2.2044 0.0018 Wis — 0.02062 — 0.02062 0.0068
61 1.83995 1.8400 0.0005
85 —2.7892 —2.7892 0.0003
97 —2.8292 —2.8292 0.0025
Max 1.8399 1.8400 0.0025 - 0.0177 0.0177 0.0068
Min —2.8292 —2.8292 0.0002 - —0.1969 —0.1969 0.0003
x10% of Korea) funded by MEST (Ministry of Education and Science Tech-
%10 nology) of Korean government.
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Fig. 17 The weight convergence histories of the 12-bar dome truss
obtained using the PINEFN and DE
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