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Abstract
In this study, a physics-informed neural energy-force network (PINEFN) framework is first proposed to directly solve the 
optimum design of truss structures that structural analysis is completely removed from the implementation of the global 
optimization. Herein, a loss function is constructed to guide the training network based on the complementary energy, con-
stitutive equations, and weight of the structure. Now only neural network (NN) is used in our scheme to minimize the loss 
function wherein weights and biases of the network are considered as design variables. In this model, spatial coordinates of 
truss members are examined as input data, while corresponding cross-sectional areas and redundant forces unknown to the 
network are taken account of output. Accordingly, the predicted outputs obtained by feedforward are employed to establish 
the loss function relied on physics laws. And then, back-propagation and optimizer are applied to automatically calculate 
sensitivity and adjust parameters of the network, respectively. This whole process, which is the so-called training, is repeated 
until convergence. The optimum weight of the structure corresponding to the minimum loss function is indicated as soon as 
the training process ends without using any structural analyses. Several benchmark examples for sizing optimization of truss 
structures are examined to determine the reliability, efficiency, and applicability of the proposed model. Obtained outcomes 
indicated that it not only reduces the computational cost dramatically but also yields higher accuracy and faster convergence 
speed compared with recent literature.

Keywords  Physics-informed · Force method · Deep neural networks · Machine learning · Unsupervised learning · 
Complementary energy · Truss optimization

1  Introduction

Over the past decade, the design optimization of truss 
structures has received considerable attention from many 
researchers in the computational mechanics community. Its 
objective is to minimize the structural weight while satisfy-
ing all constraints. In general, although there have been a 
variety of algorithms employed to address this issue, they 
all work on the same basic principle, as shown in Fig. 1a. 
Therein, the optimization tool often requires numerical sim-
ulations, such as finite element analysis (FEA), to estimate 
structural responses during each iteration of the optimizer. 
And they can be divided into two main classes. In the first 
one, the gradient-based algorithms have been successfully 
applied for searching optimal solutions. For instance, an 

algorithm based on the optimality criterion (OC) is devel-
oped by Khot et al. [1–3] and Rizzi [4] to find the optimal 
weight of the truss structure. Hrinda et al. [5] has proposed 
a new algorithm by combining the design-variable update 
scheme and arc-length method. Besides, a coupling meth-
odology based on the OC and nonlinear analysis technique 
was delivered by Saka and Ulker [6] to save the computa-
tional cost. Schmit and Farshi [7] developed a sequence of 
linear programs to sizing structural systems. However, this 
approach cannot deal with the lack of gradient information 
from the objective and constraint functions. The other one is 
the gradient-free algorithms which rely on evolutionary and 
population genetics to address the optimal design of truss 
structures, such as firefly algorithm [8, 9], harmony search 
[10, 11], genetic algorithms [12, 13], particle swarm algo-
rithm [14–18], chaotic coyote algorithm [19], big bang-big 
crunch [20, 21], teaching-learning-based optimization [22], 
hybrid differential evolution and symbiotic organisms search 
[23], adaptive hybrid evolutionary firefly algorithm [8], 

 *	 Jaehong Lee 
	 jhlee@sejong.ac.kr

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01760-0&domain=pdf
http://orcid.org/0000-0002-5056-829X


	 Engineering with Computers

1 3

evolutionary symbiotic organisms search [24], and so on. 
Despite these algorithms have achieved certain success, they 
require many evaluation functions, slow convergence rate, 
and high computational cost due to large-scale problems.

In recent years, machine learning (ML) has been dem-
onstrated to be a powerful tool for making decisions with 
applications in a variety of areas, including medical diag-
noses, voice recognition, language processing, industrial 
automation, etc. Therein, deep neural network (DNN) in 
the form of ML models has received much attention in 
computational mechanics fields, such as structural analysis 
[25], structural health monitoring [26], reliability analysis 
[27], and structural optimization [28] is no exception. As 
far as our knowledge goes, the applications of the NN to the 
structural optimization problems can be classified into two 
baselines. The first one is an approach based on data-driven 
models. Accordingly, the networks are commonly used in 
the idea of supervised learning to learn the mapping from 
arbitrary designs obtained by numerical simulations and act 
as a surrogate model of the solver. In fact, this methodology 
is not a new idea and has been developed since the 1990s 
for optimization of truss structure. For example, NN mod-
els were derived through supervised training for solving 
the optimal design of structural truss by Hajela and Berke 
[29, 30]. Adeli and Park [31] developed a nonlinear neural 
dynamics model to minimum mass design of space trusses. 
In addition, a combination between the NN and genetic algo-
rithm for the optimization of industrial roofs was released 
by Ramasamy [32]. In recent times, an integrated model of 
differential evolution algorithm and DNN to optimize truss 
structures with geometric nonlinearity was introduced by 
Mai et al. [33]. Besides, it has also been successfully applied 

to tackle topology optimization problems of structures. Of 
particular interest is the study by Li et al. [34], in which 
the authors proposed a non-iterative topology optimiza-
tion framework using the NN for heat conduction structure 
design. White [35] and Chi [36] used the NN as a surrogate 
model to replace the structural analysis phase for the topol-
ogy optimization. However, in order to achieve the optimal 
solution, it may require a huge amount of data to train as 
well as the high computational cost to generate the input data 
and their corresponding supervised labels via the structural 
analysis. Further, a variety of questions arise as to how to 
determine the sufficient data size for different problems, how 
to ensure the generalization ability of the trained model, and 
is the obtained results really better than the conventional 
alternatives? And it is very difficult to answer these ques-
tions definitively. In addition, this approach still requires 
the structural analysis model, and the physics information is 
removed in the training process. The second baseline meth-
odology is a combination between the NN and numerical 
solver to perform structural optimization directly. Figure 1b 
provides an overall view of this approach. Herein, the net-
work is employed as an optimizer, while its loss function is 
built by the output values of the network and the structural 
responses obtained from the structural analysis, respectively. 
And several researchers have successfully applied this model 
with promising potential for the structural optimization. For 
example, Chandrasekhar et al. [37–39] firstly introduced 
a direct topology optimization framework using the NN. 
In addition, a deep unsupervised learning is proposed by 
Mai et al. [28] to perform the optimization of truss struc-
tures. Although this paradigm has shown the effectiveness 
of the NN for structural design optimization problems, it 

Fig. 1   Process of structural 
optimization. a Conventional 
approach including optimizer 
algorithm and structural 
analysis. b Framework com-
bines between the deep neural 
network and structural analysis. 
c Physics-informed neural 
network without using any 
structural analyses
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still demands the structural analysis. The flowchart of this 
procedure is illustrated in Fig. 1b. It is easily be seen that 
most steps are similar as those involved in the conventional 
method (Fig. 1a). In fact, there is little difference which the 
network plays a crucial role in the implementation process 
as an optimizer. Hence, it also encounters difficulties due to 
the structural analysis.

Physics-informed neural networks (PINNs) are intro-
duced as new, powerful, and efficient method for numerical 
simulations. In contrast to the data-driven approach, this 
technique allows to solve the problems by minimizing the 
loss function which is constructed based on the physics laws. 
In comparison to conventional numerical solvers, it can eas-
ily handle the problems with irregular domains as well as 
completely avoids a discretization like FEA [40]. Further-
more, the training data are easily collected from the known 
design information of the structure without any structural 
analyses, for example, boundary conditions (BCs), geometry, 
properties of materials, etc. In addition, one of its outstand-
ing characteristic is that the sensitivity can be quickly and 
easily calculated with a back-propagation (BP) algorithm 
of the network. Hence, it has received much attention in the 
engineering field. PINN was first introduced by Raissi et al. 
[41] to solve partial differential equations (PDEs) with the 
associated boundary and initial conditions into the loss func-
tion. Nguyen-Thanh et al. introduced a deep energy method 
for the solutions of nonlinear finite deformation hyperelastic-
ity problems. The same idea was adopted by Mai et al. [25] 
to perform the geometrically nonlinear analysis of inelastic 
truss structures. Indeed, PINN has recently been proven 
effective for solving more complex computational problems, 
including PDEs, structural analysis, fluid mechanics, and so 

on. However, it has still not been yet utilized for the struc-
tural optimization design thus far.

Motivated by the foregoing challenges and based on exist-
ing works, this paper aims at presenting a physics-informed 
neural energy-force network framework for solving size opti-
mization of truss structures without using structural analysis. 
Instead of tackling the structural optimization problems as 
traditional approaches which are the combination between 
optimization algorithm and structural analysis, here only NN 
is built in our scheme to find the optimum weight of the struc-
ture, as illustrated in Fig. 1c. Accordingly, now the weights 
and biases which are known as trainable parameters of the 
network are regarded as design variables in place of the cross-
sectional areas of truss members. Therein, the spatial coordi-
nates of all truss members are treated as the input data which 
are easily gathered from the structure’s connectivity informa-
tion. The important thing that must be highlighted here is that 
this work relies on unsupervised learning, so the NN only has 
input data and does not require corresponding output values. 
In the proposed framework, the output of the network are the 
unknown cross-sectional areas and redundant forces which are 
represented by the parameters of the network. Accordingly, 
the training process aims to seek the optimal parameters of 
the network such that the loss function is minimized. At first, 
the spatial coordinates of truss elements are assigned to input, 
and the predicted outputs of the network are calculated by the 
feedforward (FF) algorithm. Thereafter, our loss function is 
designed based on these predicted values and physics laws 
to guide the training. Next, the BP algorithm of the network 
allowed to automatically calculate the sensitivity of the cost 
function with respect to the parameters. Subsequently, the opti-
mizer relies on gradient estimates to adjust the weights and 
biases of the network. The above all steps are repeated until 

Fig. 2   Physics-informed neural energy-force networks framework for design optimization
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the minimum loss is achieved, and it is called the learning 
process. And finally, the optimum weight of the structure cor-
responding to the NN’s optimal parameters is found as soon as 
the training process ends without using any structural analyses. 
The reliability, efficiency, and applicability of the proposed 
model are also demonstrated through several examples for the 
truss design under various constraints. The obtained results 
showed that PINEFN not only saves a large computational cost 
but also yields higher accuracy and faster convergence speed. 
In addition, it does not use any structural analysis tools and 
does not need to prepare the data in advance.

The rest of this study is structured as follows. Section 2 
provides the theoretical formulation of the structural optimiza-
tion based on energy-force methods. Next, a physics-informed 
neural energy-force network approach is suggested in Sect. 3. 
In Sect. 4, several numerical examples are examined to dem-
onstrate the efficiency of the proposed method. Finally, crucial 
conclusions are outlined in Sect. 5.

2 � Structural optimization based 
on energy‑force methods

Optimization of structures is known as a complex task related 
to the obtained structural response from numerical simula-
tions. And sizing optimization of truss structures is one of 
these problems. Its main goal is to minimize the structural 
weight while satisfying all design constraints as well as the 
equilibrium equations simultaneously. Therein, the struc-
tural member’s cross-sectional areas are treated as continu-
ous design variables and confined within an acceptable range. 

The general mathematical model for the linear elastic struc-
ture based on principle of minimum potential energy can be 
expressed as follows

where W(.) is the weight of the truss structure; Ak is the 
cross-sectional area of the truss elements belonging to the 
kth group which can range between Alow

k
 and Aup

k
 ; ng denotes 

the total number of groups in the structure; mk and nc are the 
number of members in the kth group and constraint func-
tions; �i and Li are the material density and length of the 
ith member; Πp is the total potential energy; � and �  are 
the vector of displacements and external forces at nodes, 
respectively; � denotes the stiffness matrix of structure; gj 
represents the jth constraint function including displacement 
and stress. To obtain the constraints in Eq. (1), the impor-
tant thing that must be highlighted here is that the principle 
of minimum potential energy is utilized to determine the 
displacement field � concerning the equilibrium equations 
and related BCs. And once it is found, the other structural 
responses can be easily achieved by the constitutive equa-
tions. It should be noted that the first constraint related to 
the first derivative of Πp to � is automatically satisfied and 
ignored. Accordingly, in most of the structural optimization 
problems in the existing literature, this approach is carried 

(1)

Minimize W(�) =

ng∑
k=1

Ak

mk∑
i=1

�iLi,

subjected to
�Πp

��
(�) = �� − � = �,

gj(�) ≤ 0 , j = 1, 2, ..., nc ,

Alow
k

≤ A
k
≤ A

up

k
, k = 1, 2, ..., ng,

Fig. 3   A fully-connected deep 
neural network architecture
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out by using the conventional FEA and incorporated into an 
optimization algorithm.

As pointed out by Ohkubo et al. [42], it was obvious that 
all structural behaviors obtained by using the principle of 
minimum complementary energy were similar to the poten-
tial energy. According to this approach, the actual member 
forces of trusses are first determined from the minimum 
of complementary energy to satisfy all stated compatibil-
ity conditions. And then the displacement field, as well as 
other responses, are easily calculated based on the obtained 
reaction and member forces. Therefore, the size optimiza-
tion of truss structures based on the principle of minimum 
complementary energy can be rewritten similarly to Eq. (1). 
The derivative of Πp to the displacement field is replaced 
by the derivative of Πc to the redundant force � . In order to 
Castigliano’s second theorem, the complementary energy for 
internal forces is minimum and satisfies the compatibility 
conditions. Thus, its derivative concerning the unknown � 
is defined as follows

in which �̄
(
∈ ℝ

dns
)
 is the external load vector; �(∈ ℝ

r) 
denotes the redundant force vector; �(∈ ℝ

ms×ms) refers to the 
diagonal flexibility matrix; ��

(
∈ ℝ

ms×dns
)
 and ��(∈ ℝ

ms×r) 
are the generalized inverse and null matrices; r, ms , and ns 
are the number of total indeterminacies, the total number 
of members and boundary conditions, and total number of 
nodes of the d-dimensional truss structure, respectively. For 
more detail detailed derivation of Eq. (2) based on the force 
method, interested readers can consult Ref. [43]. And like-
wise to the previous method when the structural analysis is 
available, given the fact that this constraint is always satis-
fied with equality for the minimum complementary energy 
and can be ignored. Once the redundant force � is deter-
mined, the structural responses can be easily obtained from 
kinematic relations.

Note that there is a small difference between the two 
above approaches for the computational structural analy-
sis. In particular, the first one applied the FEA with dis-
placement as the primary unknown to achieve the mini-
mum potential energy. While the remaining one considered 
the redundant force as the primary unknown of the force 
method which is found from the minimum complemen-
tary energy. However, the above-mentioned approaches 
are all based on the basic principle which required both the 
optimization algorithm and the numerical solver. Therein, 
the structural analysis is required for each iteration of the 
optimization process. Despite its success in a wide range 
of optimization problems, it still faces challenging issues 
due to the increasing computational cost for the high-
dimensional problem.

(2)
𝜕Πc

𝜕�
(�) =

(
�T
1
��0

)
�̄ +

(
�T
1
��1

)
� = �.

To overcome the computing challenge, an alternative 
paradigm based on the complementary energy and force 
is developed for optimization of truss structures without 
using any structural analyses. Its mathematical formulation 
can be expressed as [44]

It is worth mentioning that this approach is quite different 
comparing to the previous traditional methods for searching 
the optimum weight of truss structures. More concretely, 
there are three main differences between Eq. (3) and Eq. 
(1) as below 

	 (i)	 First, it is easily seen that the design variables of Eq. 
(3) include the cross-sectional areas and redundant 
forces, while the other methods are only the cross-
sectional area of the truss members as shown in Eq. 
(1).

	 (ii)	 Next, the first constraint automatically satisfies a 
zero first derivative for the potential or complemen-
tary energies in Eq. (1) where the structural analysis 
is carried out to estimate the structural responses. 
Hence, it can be entirely ignored. On the contrary, 
this characteristic does not exist in Eq. (3) due to 
considering the redundant forces as the design vari-
ables.

	 (iii)	 Finally, the optimization algorithm and structural 
analysis are required to achieve the optimal solution 
for Eq. (1). And all the while, the approach based on 
Eq. (3) only needs to be the optimization algorithm.

In order to tackle Eq. (3), a self-adaptive penalty function is 
used to handle the constraint function through transforming 
the constrained structural optimization problem to an uncon-
strained optimization one [45, 46]. Consequently, it is rewrit-
ten as follows

in which c denotes the sum of the violated constraints; �1 
and �2 represent parameters to control the exploration and 
exploitation rates of the design region. As suggested by Son-
mez [45] and Hasancebi [46], the parameter �2 is set equal to 
1, and the value of �1 is self-adaptive based on the feedback 

(3)

Minimize W(�) =

ng∑
k=1

Ak

mk∑
i=1

𝜌iLi,

subjected to
𝜕Πc

𝜕�
(�, �) =

�
�T
1
��0

�
�̄ +

�
�T
1
��1

�
� = 0,

gj(�, �) ≤ 0 , j = 1, 2, ..., nc ,

Alow
k

≤ A
k
≤ A

up

k
, k = 1, 2, ..., ng,

qlow
l

≤ q
l
≤ qup, l = 1, 2, ..., r.

(4)

Minimize L(�,�) =
�
1 + 𝜀1(‖�‖ + c)

�𝜀2 W(�) ,

�(�,�) =
�
�T
1
��0

�
�̄ +

�
�T
1
��1

�
�,

c =
nc∑
j=1

max
�
0, gj(�,�)

�
,
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information from the previous iteration and is expressed as 
follows

where �(t)
1

 is the penalty coefficient at the tth iteration, and 
�
(1)

1
 is chosen 1 at the beginning of the iteration. � denotes 

the learning parameter of �(t)
1

 , and is given by

3 � Physics‑informed neural energy‑force 
network

In this section, the physics-informed neural energy-force 
network is developed to perform optimization of truss struc-
tures. The whole schematic illustration, as shown in Fig. 2, 
gives an overall view of the present approach. Different 
from most existing works, the NN model with unsupervised 
learning is designed to find the optimum weight of struc-
tures that it only relies on the knowledge of any physical 
laws and doesn’t need any structural analysis. Note that for 
the present approach, the design variables of the structural 
optimization are the parameters of the network ��� including 
weights and biases, instead of the cross-sectional areas of 
truss members. According to the flow diagram, a fully con-
nected NN is set first up to perform the design optimization 
of truss structures. At the start of the training run, all weights 
and all biases were initialized with their values obey the 
normal distribution in the range of [−1, 1] . The coordinates 
of all truss members in the structure are employed as the 
input training data, whilst the corresponding cross-sectional 
areas and redundant forces are defined as the outputs of the 
network ( �̂, �̂ ) obtained by the FF process. Based on these 
outputs, external forces, BCs, and physical laws, the self-
adaptive penalty function, including the objective, comple-
mentary energy, and constraints, is derived as the loss func-
tion which is minimized by tuning the network’s weights 

(5)�
(t)

1
=

{
(1∕�)�

(t−1)

1
if L(t−1) feasible,

� �
(t−1)

1
if L(t−1) infeasible,

(6)𝜅 = 1 +
1

nc + 1
> 1.01.

and biases. And then BP algorithm of the network allows to 
automatically calculate the sensitivity of the loss function to 
the corresponding parameters, whereby they will be updated. 
One epoch is an iteration of training that consists of pairs 
of FF and BP. In order to carry out the training process, the 
above operations are performed and repeated many times 
until reaches the minimum loss function value correspond-
ing to the optimum weight of truss structures. In general, 
the proposed approach consists of three main components, 
namely training data, DNN, and loss function. The following 
sub-sections and Algorithm 1 allow to represent in greater 
detail the proposed methodology.

3.1 � Training data

It is important to stress that, contrary to previous approaches 
which utilized supervised learning framework, the model 
presented here is designed based on the unsupervised learn-
ing algorithm. Hence, the training data only has the input 
data, while the corresponding output values are not given. 
In other words, the cross-sectional areas, redundant forces, 
and the responses of the structure including stress, strain, 
displacement, member force, etc. are not included in the 
training data. It means that all training data of PINEFN 
only contains a set of coordinates of all truss members. In 
particular, the coordinates of the kth member that connects 
the nodes ith and jth XXX(k, ∶) =

[
xi, yi, zi, xj, yj, zj

]
∈ ℝ

6 are 
treated as a training data point which is used as the input val-
ues of the NN. Obviously, the whole training data XXX can be 
easily collected from the geometric and connection informa-
tion of nodes. Furthermore, its size is small XXX

(
∈ ℝ

ms×4
)
 and 

XXX
(
∈ ℝ

ms×6
)
 for planar and space truss structures, respec-

tively. Here ms denotes the total number of truss members, 
while 4 or 6 show the number of spatial coordinates for 
2- or 3- dimensional truss. Due to the nature of the activa-
tion function, the input data is normalized to the interval of 

Table 1   Hyperparameters fCVEor the benchmarks tested in this study

Problem Depth Width Optimizer Learning rate Epochs

10-bars 2 30 Adam 0.01 1000
17-bars 2 40 Adam 0.01 1000
200-bars 3 40 Adam 0.01 5000
25-bars 3 30 Adam 0.01 1000
72-bars 3 60 Adam 0.01 1000
120-bars dome 3 60 Adam 0.01 1000

1
1

4

35

6 2

2

3 4

5 6
7 8 9 10

360 in 360 in

360 in

x

y

P1 P1

P2P2

Fig. 4   A 10-bar planar truss structure
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[-1, 1] to accelerate the learning process. Additionally, the 
information to describe the problem, such as material, BCs, 
external loads, number of total indeterminacies, and so on, 
not included in the training data, but they were necessary to 
put some restrictions on the output values as well as build-
ing the loss function of the network. Obviously, they can be 
easily obtained before starting the training.

3.2 � Feedforward

Firstly, a fully connected neural network with depth � , as 
shown in Fig. 3, is designed to find the optimal truss struc-
ture. It consists of one input layer, one output layer, and 
(� − 1) hidden layers. Therein, the first layer is known as the 
input layer which has four or six neurons corresponding with 
the coordinates of members for 2- or 3-dimensional truss, 

respectively. The final layer is known as the output layer 
with two neurons, which corresponds to the predicted cross-
sectional area and redundant force. And the other layers are 
referred to as the hidden layers. Meanwhile, the number of 
hidden layer and hidden neurons depend on the complex-
ity of the application. All neurons of the present layer are 
connected to all units in the previous layer via the param-
eters of the network, which consists of weights and biases, 
and their initial values ���0 are randomly generated following 
the normal distribution in the range of [-1, 1]. In addition, 
Adam optimizer with its default parameters as suggested by 
Kingma and Ba [47] was set up to perform the training task.

In general, the FF is the process of propagation of the 
training data from the input layer to the hidden layers and 
then to the output layer of the NN. Accordingly, the relation-
ship between the input and output values of each layer for 
the kth truss member obtained by FF is expressed as follows

Table 2   Comparison of the obtained results for the 10-bar truss with the first loading condition

A i  (in2) Schmit [7] Rizzi [4] Lee [10] Li [14] This study

PSO PSOPC HPSO DE PINEFN

A
1

33.43 30.73 30.15 33.469 30.569 30.704 30.529 30.534
A

2
0.1 0.1 0.102 0.11 0.1 0.1 0.100 0.101

A
3

24.26 23.93 22.71 23.177 22.974 23.167 23.216 23.208
A

4
14.26 14.73 15.27 15.475 15.148 15.183 15.200 15.230

A
5

0.1 0.1 0.102 3.649 0.1 0.1 0.100 0.100
A

6
0.1 0.1 0.544 0.116 0.547 0.551 0.555 0.551

A
7

8.388 8.542 7.541 8.328 7.493 7.46 7.455 7.458
A

8
20.74 20.95 21.56 23.34 21.159 20.978 21.029 21.053

A
9

19.69 21.84 21.45 23.014 21.556 21.508 21.535 21.495
A
10

0.1 0.1 0.1 0.19 0.1 0.1 0.100 0.100
Wbest (lb) 5089.00 5076.66 5057.88 5529.50 5061.00 5060.92 5060.86 5061.06
CVEmax (%) 21.14 None 0.09 None None None None None
Times (s) – – – – – – 96.52 5.02

Table 3   Error of the constraints 
for the 10-bar planar truss with 
the first loading condition

Elements Stress (ksi) Dofs Displacement (in)

FEA PINEFN Error (%) FEA PINEFN Error (%)

1 6.6366 6.6366 0.0002 u
1

0.1921 0.1921 0.0095
2 − 1.3002 − 1.2997 0.0398 v

1
− 2.0000 − 2.0000 0.0002

3 − 8.5040 − 8.5040 0.0004 u
2

− 0.5428 − 0.5428 0.0004
4 − 6.5744 − 6.5744 0.0003 v

2
− 1.9914 − 1.9914 0.0002

5 24.9995 24.9993 0.0011 u
3

0.2389 0.2389 0.0002
6 − 0.2385 − 0.2386 0.0058 v

3
− 0.7354 − 0.7354 0.0002

7 18.4610 18.4609 0.0008 u
4

− 0.3061 − 0.3061 0.0004
8 − 6.8950 − 6.8950 0.0002 v

4
− 1.6353 − 1.6353 0.0007

9 6.5879 6.5879 0.0000
10 1.8553 1.8554 0.0068
Max 24.9995 24.9993 0.0398 – 0.2389 0.2389 0.0095
Min − 8.5040 − 8.5040 0.0000 – − 2.0000 − 2.0000 0.0002
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where W(.) is the weight matrix; b(.) is the bias vector; mk 
is the number of units in the kth hidden layer; f(.) denotes 
the activation function, which allows the network to learn 
about the complete relationship between the input and out-
put. There are several popular activation functions, for exam-
ple, Tanh, Sigmoid, ReLU, LeakyReLU, Softmax, Linear, 
and so on. In this study, the softmax function is selected for 

(7)

input layer : �0 = XXX(k, :) =
[

xi, yi, zi, xj, yj, zj
]

∈ ℝ6,
hidden layers: �n = f1

(

�nT�(n−1) + �n
)

∈ ℝmn ,
for 1 ≤ n ≤ (� − 1),

output layer : �� = f2
(

��T�(�−1) + ��
)

= [Âk, q̂k], ∈ ℝ2,

the output layer, while the activation function of the hidden 
layer is LeakyReLU.

From Eq. (7), it is clear that we can easily get the pre-
dicted output values including the cross-sectional areas 
�̂(∈ ℝ

ms) and redundant forces �̂(∈ ℝ
ms) with respect to the 

coordinates of other truss members in the training data XXX . 
In fact, the total number of redundant fores r is less than 
the number of truss members ms . Consequently, only first r 
values of the predicted redundant force vector �̂ are used to 
build the loss function, while all predicted cross-sectional 
areas are available. Obviously, this will not affect the per-
formance of the NN, because only the values used to design 
the loss function allow tuning the parameters of the network.

3.3 � Backpropagation & training

Next, the loss function which plays a role as an objective 
function of the network is formulated based on the output 
values from the FF phase. According to this approach, the 
predicted cross-sectional areas and redundant forces are 
expressed by the nodes’ coordinates and the parameters of 
the network. And clearly, it based on the penalty function in 
Eq. (4) is rewritten as follows

with

As shown in Eq. (8), it is easily seen that the design vari-
ables are now the parameters of the network instead of the 

(8)L(XXX,𝜃𝜃𝜃) =
�
1 + 𝜀1(‖�‖ + c)

�𝜀2 W
�
�̂(XXX,𝜃𝜃𝜃)

�
,

(9)
�(XXX,𝜃𝜃𝜃) =

�
�T
1
��0

�
�̄ +

�
�T
1
��1

�
�̂(XXX,𝜃𝜃𝜃),

c(XXX,𝜃𝜃𝜃) =
n∑

k=1

max
�
0, gj

�
�̂(XXX,𝜃𝜃𝜃), �̂(XXX,𝜃𝜃𝜃)

��
.

Table 4   Standard errors ( % ) of 
optimal weight for the 10-bar 
truss with respect to various 
optimizers and activation 
functions for the first load case

Activation Optimizers

functions Adam Adamw Adadelta Adagrad Adamax SGD ASGD

Softmax 0.5781 0.2678 0.9666 5.5167 1.1592 12.0243 56.8574
Softplus 0.3242 0.3413 0.6172 0.8193 0.3717 0.9710 29.6784
Tanh 0.1425 0.1628 0.8713 1.3563 0.1969 2.3996 30.1295
Sigmoid 0.3545 0.3865 1.0425 1.3875 0.4594 15.0234 40.2913
ReLU 0.0043 0.3468 0.0221 0.0540 0.0212 0.6399 27.9569
LeakyReLU 0.0039 0.0052 0.0146 0.0421 0.0257 0.6212 27.7776

Table 5   Standard errors ( % ) of 
optimal weight for the 10-bar 
truss with respect to various 
hidden layers and neurons for 
the first load case

Hidden Number of hidden neurons

layers 10 15 20 25 30 35 40 45 50

1 0.4407 0.3476 0.3284 0.3202 0.3262 0.3187 0.3174 0.3180 0.3179
2 0.0047 0.0073 0.3142 0.0048 0.0039 0.3141 0.3141 0.2220 0.3132
3 0.0763 0.0274 0.0173 0.0099 0.0288 0.3438 0.1320 0.3132 0.0086

Fig. 5   The weight convergence histories of the 10-bar truss obtained 
using the PINEFN and DE for the first load case
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cross-sectional areas as the conventional approach. Fur-
thermore, it is worth mentioning that this function is built 
relying on the physics laws and the information to define 
the problem. Hence, the structural analysis are completely 

Table 6   Comparison of the obtained results for 10-bar planar truss with the second loading condition

A i  (in2) Schmit [7] Rizzi [4] Lee [10] Li [14] This study

PSO PSOPC HPSO DE PINEFN

A
1

24.29 23.53 23.25 22.935 23.743 23.353 23.528 23.731
A

2
0.1 0.1 0.102 0.113 0.101 0.1 0.100 0.101

A
3

23.35 25.29 25.73 25.355 25.287 25.502 25.280 25.238
A

4
13.66 14.37 14.51 14.373 14.413 14.25 14.375 14.218

A
5

0.1 0.1 0.1 0.1 0.1 0.1 0.100 0.100
A

6
1.969 1.97 1.977 1.99 1.969 1.972 1.970 1.975

A
7

12.67 12.39 12.21 12.346 12.362 12.363 12.391 12.396
A

8
12.54 12.83 12.61 12.923 12.694 12.894 12.826 12.763

A
9

21.97 20.33 20.36 20.678 20.323 20.356 20.336 20.393
A
10

0.1 0.1 0.1 0.1 0.103 0.101 0.100 0.100
Wbest (lb) 4691.84 4676.92 4668.81 4679.47 4677.70 4677.29 4676.93 4677.25
CVEmax (%) None None 0.19 None None None None None
Times (s) – – – – – – 104.29 5.83

Table 7   Error of the constraints 
for the 10-bar planar truss with 
the second loading condition

Elements Stress (ksi) Dofs Displacement (in)

FEA PINEFN Error (%) FEA PINEFN Error (%)

1 6.4582 6.4582 0.0002 u
1

− 0.0390 − 0.0387 0.7538
2 − 7.5425 − 7.5399 0.0349 v

1
− 1.1022 − 1.1023 0.0032

3 − 9.7764 − 9.7764 0.0002 u
2

− 0.6071 − 0.6071 0.0001
4 − 7.0867 − 7.0867 0.0000 v

2
− 2.0000 − 2.0000 0.0016

5 24.9969 24.9966 0.0011 u
3

0.2325 0.2325 0.0002
6 24.9406 24.9396 0.0041 v

3
− 0.6574 − 0.6574 0.0001

7 16.7409 16.7408 0.0009 u
4

− 0.3520 − 0.3520 0.0002
8 − 5.9016 − 5.9016 0.0001 v

4
− 1.5573 − 1.5573 0.0007

9 6.9875 6.9875 0.0000
10 10.6667 10.6674 0.0062
Max 24.9969 24.9966 0.0349 – 0.2325 0.2325 0.7538
Min − 9.7764 − 9.7764 0.0000 – − 2.0000 − 2.0000 0.0001

Fig. 6   The weight convergence histories of the 10-bar truss obtained 
using the PINEFN and DE for the second load case
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Fig. 7   A 17-bar planar truss structure
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removed by our method, and only the neural network is used 
to perform the structural optimization task. Instead of solv-
ing the structural optimization, our approach minimizes the 
loss function to seek the optimal parameters of the network.

In this work, Adam is a well-known gradient-based opti-
mizer which is used to perform the training. Hence, the 

(10)���∗ = argmin
���

(L(XXX,���) ).

sensitivity analysis regarding computing the derivatives 
of the loss function with respect to each of all parameters 
∇L(���) must be determined. As mentioned above, this is eas-
ily and automatically calculated by utilizing BP which is 
a reverse mode of automatic differentiation and integrated 
into the common neural network with the Python library. 
For more details, interested readers are suggested to refer 
to Ref. [48]. As a result, the network parameters at epoch 
(t + 1) are adjusted as

where �t+1 and �t+1 are obtained by

in which ��� is the trainable parameter vector of the network 
that consists of weights and biases; �t+1 and �t+1 are the 
first and second raw moment vectors which are controlled 
by two exponential decay rates �1, �2 ∈ [0, 1) ; � denotes a 
constant added to ensure numerical stability, and � is the 
learning rate. In this study, their default values as suggested 
by Kingma and Ba [47] were utilized to train the model. 
Interested readers can refer to [47] for more details. Finally, 
the above process which corresponded with steps 5-11 in 

(11)���t+1 = ���t − �
�t+1

�
1 − �

(t+1)

2

�
1 − �

(t+1)

1

��√
�t+1 + �

�
1 − �

(t+1)

2

� ,

(12)
�t+1 = �1�t +

(
1 − �1

)
.∇L

(
���t
)
,

�t+1 = �2�t +
(
1 − �2

)
.∇L

(
���t
)
,

Table 8   Comparison of the 
obtained results for the 17-bar 
planar truss

A i  (in2) Lee [10] Li [14] Khot [2] Adeli [12] This study

PSO PSOPC HPSO DE PINEFN

A
1

15.821 15.766 15.981 15.896 15.93 16.029 15.920 15.906
A

2
0.108 2.263 0.1 0.103 0.1 0.107 0.100 0.113

A
3

11.996 13.854 12.142 12.092 12.07 12.183 12.075 12.068
A

4
0.1 0.106 0.1 0.1 0.1 0.11 0.100 0.100

A
5

8.15 11.356 8.098 8.063 8.067 8.417 8.070 8.074
A

6
5.507 3.915 5.566 5.591 5.562 5.715 5.554 5.557

A
7

11.829 8.071 11.732 11.915 11.933 11.331 11.936 11.917
A

8
0.1 0.1 0.1 0.1 0.1 0.105 0.100 0.100

A
9

7.934 5.85 7.982 7.965 7.945 7.301 7.940 7.949
A
10

0.1 2.294 0.113 0.1 0.1 0.115 0.100 0.103
A
11

4.093 6.313 4.074 4.076 4.055 4.046 4.055 4.061
A
12

0.1 3.375 0.132 0.1 0.1 0.101 0.100 0.100
A
13

5.66 5.434 5.667 5.67 5.657 5.611 5.668 5.665
A
14

4.061 3.918 3.991 3.998 4 4.046 3.988 4.005
A
15

5.656 3.534 5.555 5.548 5.558 5.152 5.561 5.550
A
16

0.1 2.314 0.101 0.103 0.1 0.107 0.101 0.104
A
17

5.582 3.542 5.555 5.537 5.579 5.286 5.583 5.579
Wbest (lb) 2580.81 2724.37 2582.85 2581.94 2581.89 2594.42 2581.89 2581.97
CVEmax 0.04 None None None None 1.69 None None
Times (s) – – – – – – 268.96 6.73

Fig. 8   The weight convergence histories of the 17-bar truss obtained 
using the PINEFN and DE
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Algorithm 1 was repeated until the stop condition was satis-
fied. A pseudo-code of the training for the parameters tun-
ing is summarized in Algorithm 1. And once the network 

is trained, the optimum weight is found at the minimum of 
the loss function corresponding to the optimal parameters 
without using any structural analyses.

Table 9   Error of the constraints 
for the 17-bar planar truss

Elements Stress (ksi) Dofs Displacement (in)

FEA PINEFN Error (%) FEA PINEFN Error (%)

1 25.0262 25.0270 0.0029 u
3

− 0.0834 − 0.0834 0.0024
2 24.1879 24.1961 0.0337 v

3
− 0.2447 − 0.2447 0.0214

3 − 25.0193 − 25.0187 0.0024 u
4

0.0834 0.0834 0.0029
4 − 1.6089 − 1.5939 0.9324 v

4
− 0.2500 − 0.2500 0.0009

5 24.9903 24.9884 0.0075 u
5

− 0.1668 − 0.1668 0.0016
6 24.9983 24.9995 0.0049 v

5
− 0.6669 − 0.6669 0.0015

7 − 25.0254 -25.0252 0.0008 u
6

0.1667 0.1667 0.0023
8 3.4540 3.4381 0.4608 v

6
− 0.6554 − 0.6555 0.0097

9 24.9810 24.9820 0.0041 u
7

− 0.2501 − 0.2501 0.0021
10 19.5849 19.6173 0.1657 v

7
− 1.2027 − 1.2030 0.0234

11 − 24.9757 − 24.9781 0.0096 u
8

0.2500 0.2500 0.0001
12 − 14.2641 − 14.1821 0.5746 v

8
− 1.2503 − 1.2503 0.0006

13 24.9641 24.9623 0.0070 u
9

− 0.3333 − 0.3333 0.0007
14 − 24.9688 − 24.9665 0.0092 v

9
− 2.0000 − 2.0000 0.0003

15 − 24.9889 − 24.9888 0.0001
16 − 24.0933 − 24.0958 0.0105
17 − 24.9873 − 24.9874 0.0004
Max 25.0262 25.0270 0.9324 – 0.2500 0.2500 0.0234
Min − 25.0254 − 25.0252 0.0001 – − 2.0000 − 2.0000 0.0001
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4 � Numerical experiments

In the following, several numerical examples are investigated 
to demonstrate the efficiency of the presented approach for 
solving structural optimization problems. For this purpose, 
the obtained solutions will be compared with differential 
evolution algorithm (DE) and other methods achieved in 
the literature. In all examples, the LeakyReLU and Softmax 
are employed as the hidden and output activation functions, 
respectively. On the other hand, the other hyperparameters 
of the network for each problem which are found by Grid 
search and by trial-error methods are listed in Table 1. Note 
that the learning process is terminated when either the maxi-
mum number of epochs reaches or the norm of the gradient 
value is less than 0.01 [28, 37].

In addition, the parameters of the DE algorithm are 
selected as follows: population size 20, mutant factor F = 
0.8, maximum number of evaluations 3000, crossover fac-
tor Cr = 0.9, and setting the value of convergence criteria to 
10−6 [9, 23, 28]. Due to the DE algorithm’s stochastic nature, 
the best solution to each problem is addressed by following 
30 independent runs. All of the experiments were performed 
on a personal desktop computer using Python software.

4.1 � Ten‑bar truss

A ten-bar planar truss structure, as illustrated in Fig. 4, is 
examined as the first numerical example for design opti-
mization. Cross-sectional areas of members are considered 
as design variables and their minimum values are specified 
as 0.1 in2 . The material density and Young’s modulus are 
set as 0.1 lb/in3 and 104 ksi, respectively. The displacement 
limits of ±2.0 in are applied to all free nodes. The allow-
able stress for all elements is restricted to ±25.0 ksi. In this 
example, two load cases are considered as following: (1) the 
first loading condition with P 1 = 100 kips and P 2 = 0; (2) 
the second loading condition with P 1 = 150 kips and P 2 = 
50 kips. The architecture (4-30-30-2) and parameters of the 
network, as shown in Table 1, are employed to perform the 
training process.

A comparison of the optimal solution obtained by this 
study and previous works, including design variables, total 
weight of the structure (W), maximum constraint violation 
error (CVE), as well as computational time, is reported in 
Table 2 for the first loading case. Therein, CVE is expressed 
as follows

where CVE j is the jth constraint violation error; g j denotes 
the jth constraint value; [Δ]j is the jth allowable displace-
ment or stress.

Firstly, it is easily seen that the obtained result of the 
PINEFN (5061.06 lb) reveals a fairly good agreement with 
the DE (5060.86 lb), HPSO (5060.92 lb), and PSOPC 
(5061.00 lb). Note that even though the lightest design 
given by Lee (5057.88 lb) violated the design constraints 
(0.09%). Nevertheless, the PINEFN outperforms well-
known existing algorithms in term of the solution quality 
as well as the computing times. More specifically, the pro-
posed approach (5.02 s) only spends one-nineteenth of the 
computation costs of DE (96.52 s) to get the near-global 
optimal solution as possible. In addition, all constraints 
are satisfied without violation, and the weight error against 
the DE is very small with only 0.0039%. This can easily 
be explained by the fact that a sufficiently large number 

(13)CVEj =

�
none gj ≤ 0,
‖gj‖
[Δ]j

100% gj > 0,
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Fig. 9   A 200-bar planar truss structure



Engineering with Computers	

1 3

of independent runs are demanded for the metaheuristic 
algorithms due to their stochastic nature [4, 7, 10, 14]. 
Meanwhile, our training model relied on the gradient 
descent algorithm, so it only requires one run time and 
saves a massive amount of the computational cost. And no 
structural analysis is of special importance here. In addi-
tion to evaluate the effect of the PINEFN, the constraint 
values gained through this work are compared with the 
exact values attained by FEA using the obtained optimal 
solution reported in Table 3. Obviously, none of the stress 
and displacement constraints are violated. Furthermore, 
it can be observed that the structural responses acquired 
by PINEFN are very close to FEA with the error less than 
0.04%. Besides, the weight convergence histories of two 
algorithms are illustrated in Fig. 5. Clearly, our procedure 
converges very fast at the beginning, tends to a fairly sta-
ble performance at the epoch of 500 approximately, and 
then arrives at the near-optimal solution only through 1000 
epochs. More importantly, it works completely without 
using FEA. By contrast, the DE algorithm converges very 
slowly and demands a large number of FEA evaluations 
(18,041) to reach the optimum weight.

According to evaluate the impact of various hidden acti-
vation functions and optimizers on the performance of the 
network, a survey is carried out to determine the most suit-
able combination based on the network architecture (4-30-
30-2). Herein, the mean square error (MSE) of the optimum 
weight between the PINEFN and DE is used as a standard 
measurement tool. And the obtained results are summarized 

in Table 4. Evidently, Adam and LeakyReLU are the best 
optimizer and activation functions, respectively. Therein, 
their combination yields the lowest MSE (0.0039%), so it 
is chosen for the training phase. At the same time, the grid 
search procedure is applied to select the number of hidden 
neurons and layers. MSEs of the optimum weight are shown 
in Table 5 for each case. From the data in this table, it can be 
seen that increasing the number of hidden neurons and layers 
cannot always improve the accuracy of the model. In this 
example, the network architecture with two hidden layers 
and thirteen neurons is the most suitable with the smallest 
MSE (0.0039%).

For case 2, the optimal results obtained by PINEFN, and 
previous works are illustrated in Tables 6, 7 and Fig. 6. Simi-
larly, in case 1, the optimum weight found by the PINEFN 
(4677.25 lb) is close to Rizzi [4](4676.92 lb), DE (4676.93 
lb), and smaller than the other studies (Schmit [7]: 4691.84 
lb; PSO [14]: 4679.47 lb; PSOPC [14]: 4677.70 lb; and 
HPSO [14]: 4677.29 lb). Again, our framework takes only 
5.83 s, while DE requires 104.29 s to get as accurate solu-
tions as possible. And clearly, it saves more than 17 times 
the computational cost. As can be seen from the data of 
Table 7, it is obvious that all constraints are not violated 
and the largest error value (0.7538%) is less than 1%. Again, 
PINEFN can achieve comparable accuracy compared to 
traditional methods. In addition, PINEFN converges very 
quickly to the optimal solution, while the DE is still a long 
way from the desired value.

Table 10   Design variables of the 200-bar planar truss

Design 
vari-
ables

Member group Design 
vari-
ables

Member group

A
1

1, 2, 3, 4 A
16

82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 
113

A
2

5, 8, 11, 14, 17 A
17

115, 116, 117, 118
A
3

19, 20, 21, 23, 24 A
18

119, 122, 125, 128, 131
A
4

18, 25, 56, 63, 94,101, 132, 139, 170, 177 A
19

133, 134, 135, 136, 137, 138
A
5

26, 29, 32, 35, 38 A
20

140, 143, 146, 149, 152
A
6

6, 7, 9, 10, 12, 13, 15,16, 27, 28, 30, 31, 33,34, 36, 37 A
21

120, 121, 123, 124, 126, 127,129, 130, 141, 142, 144, 145, 147, 
148, 150, 151

A
7

39, 40, 41, 42 A
22

153, 154, 155, 156
A
8

43, 46, 49, 52, 55 A
23

157, 160, 163, 166, 169
A
9

57, 58, 59, 60, 61, 62 A
24

171, 172, 173, 174, 175, 176
A
10

64, 67, 70, 73, 76 A
25

178, 181, 184, 187, 190
A
11

44, 45, 47, 48, 50, 51,53, 54, 65, 66, 68, 69,71, 72, 74, 75 A
26

158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185, 
186, 188, 189

A
12

77, 78, 79, 80 A
27

191, 192, 193, 194
A
13

81, 84, 87, 90, 93 A
28

195, 197, 198, 200
A
14

95, 96, 97, 98, 99, 100 A
29

196, 199
A
15

102, 105, 108, 111, 114
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4.2 � Seventeen‑bar truss

A seventeen-bar planar truss structure is investigated as the 
second example for size optimization. The geometry, load-
ing, element representation, and boundary condition are 
schematized in Fig. 7. The linear elastic modulus and mate-
rial density are 30,000 ksi and 0.268 lb/in3 , respectively. 
Cross-sectional areas of members are considered as design 
variables. All displacement of nodes are restricted to ±2.0 
in, and stress limitations of members ±50 ksi were imposed 
on all members. The minimum cross-sectional areas are set 
at 0.1 in2 . The network architecture (4-40-40-2) is used to 
train this problem with 1,000 epochs.

As the first presented example, the optimal solutions 
achieved by this study in comparison with other works are 

tabulated in Table 8. It is obvious that the optimum weight 
found by the PINEFN (2581.97 lb) agrees well with Khot [2] 
(2581.89 lb), DE [2] (2581.89 lb), and HPSO [14] (2581.94 
lb) without violating constraints. However, it is clear that our 
model outperforms the metaheuristic algorithms in terms 
of computation times. In particular, its computation cost 
(6.73 s) reduces more than 39 times compared with the DE 
(268.96 s). All constraints and their error are summarized 
in Table 9 which shows a comparison of PINEFN and FEA 
using the obtained optimal cross-sectional areas. And it is 
easily seen that all the optimized displacements and stresses 
are free from any violations of constraints. In addition, the 
overall structural responses found by the PINEFN are simi-
lar to that of the FEA with the error less than 1%. A com-
parison of the convergence history between the proposed 

Table 11   Optimization results obtained for the 200-bar planar truss

A i  (in2) Lee [12] Kaveh [20] Lamberti [49] Degertekin [11] Degertekin [22] Pierezan [19] Mai [28] PINEFN

DE DUL

A
1

0.1253 0.1033 0.1468 0.150 0.146 0.1390 0.1206 0.1183 0.1032
A

2
1.0157 0.9184 0.9400 0.946 0.941 0.9355 0.9345 0.9907 0.9470

A
3

0.1069 0.1202 0.1000 0.101 0.100 0.1000 0.1168 0.1142 0.1158
A

4
0.1096 0.1009 0.1000 0.100 0.101 0.1000 0.1000 0.2323 0.1111

A
5

1.9369 1.8664 1.9400 1.945 1.941 1.9355 1.9292 1.9580 1.9501
A

6
0.2686 0.2826 0.2962 0.296 0.296 0.2909 0.2870 0.2906 0.2977

A
7

0.1042 0.1000 0.1000 0.100 0.100 0.1000 0.1102 0.1624 0.1229
A

8
2.9731 2.9683 3.1042 3.161 3.121 3.0816 3.0780 3.1520 3.1354

A
9

0.1309 0.1000 0.1000 0.102 0.100 0.1000 0.2074 0.1381 0.1036
A
10

4.1831 3.9456 4.1042 4.199 4.173 4.0816 4.0783 4.1834 4.1312
A
11

0.3967 0.3742 0.4034 0.401 0.401 0.3967 0.4329 0.3844 0.4214
A
12

0.4416 0.4501 0.1912 0.181 0.181 0.2959 0.1546 0.2115 0.1057
A
13

5.1873 4.9603 5.4284 5.431 5.423 5.3854 5.3500 5.4466 5.4590
A
14

0.1912 1.0738 0.1000 0.100 0.100 0.1000 0.1027 0.1273 0.1056
A
15

6.2410 5.9785 6.4284 6.428 6.422 6.3853 6.3502 6.4490 6.4572
A
16

0.6994 0.7863 0.5734 0.571 0.571 0.6332 0.5636 0.5317 0.5505
A
17

0.1158 0.7374 0.1327 0.156 0.156 0.1842 0.5160 0.2150 0.1232
A
18

7.7643 7.3809 7.9717 7.961 7.958 8.0396 7.9508 8.0113 7.9973
A
19

0.1000 0.6674 0.1000 0.100 0.100 0.1000 0.1017 0.1434 0.1391
A
20

8.8279 8.3000 8.9717 8.959 8.958 9.0395 8.9503 8.9967 8.9847
A
21

0.6986 1.1967 0.7049 0.722 0.720 0.7460 0.8932 0.7054 0.7276
A
22

1.5563 1.0000 0.4196 0.491 0.478 0.1306 0.1525 0.2450 0.2385
A
23

10.9806 10.8262 10.8636 10.909 10.897 10.9114 11.0423 10.8275 10.8581
A
24

0.1317 0.1000 0.1000 0.101 0.100 0.1000 0.1000 0.1266 0.1680
A
25

12.1492 11.6976 11.8606 11.985 11.897 11.9114 12.0423 11.8557 11.8564
A
26

1.6373 1.3880 1.0339 1.084 1.080 0.8627 0.9196 0.8580 0.9799
A
27

5.0032 4.9523 6.6818 6.464 6.462 6.9169 6.7136 6.8944 6.6773
A
28

9.3545 8.8000 10.8113 10.802 10.799 10.9674 10.7305 11.1690 10.9118
A
29

15.0919 14.6645 13.8404 13.936 13.922 13.6742 13.8833 13.6032 13.7673
Wbest (lb) 25447.10 25156.5 25445.63 25542.5 25488.15 25450.18 25564.99 25547.90 25436.49
CVEmax 3.69 9.97 0.071 None None None None None None
Times (s) – – – – – – 3553.64 1305.27 100.91
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method and DE is illustrated in Fig. 8. Clearly, the PINEFN 
converges more rapidly than the DE. It only requires 1,000 
epochs without FEA, while the DE uses 35,761 FEA simula-
tions to gain the near-global optimal weight.

4.3 � 200‑bar planar truss

The next optimization problem deals with the 200-bar pla-
nar truss shown in Fig. 9. All members are divided into 29 
groups corresponding to the design variables which are indi-
cated in Table 10. The material density and linear elastic 
modulus are 0.283 lb/in3 and 30,000 ksi for all elements. 
This structure is subjected to stress limitations of ±10 ksi. 
The minimum design variable is 0.1 in2 . It is designed for 
three loading cases: 1) 1 kip acting in the positive direction 
of the x-axis at nodes 1, 6, 15, 20, 29, 34, 43, 48,57, 62 and 
71; (2) 10 kip applying in the negative direction of the y-axis 
at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 
20,22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 
44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 
66, 68, 70, 71, 72, 73, 74 and 75; (3) including conditions (1) 
and (2) acting together. In this example, the network configu-
ration with 3 hidden layers, 40 neurons per hidden layer, and 
5,000 epochs are carried out to perform the training process.

The optimum weight and design variables are reported in 
Table 11. It is worth mentioning that the PINEFN attains the 
lightest design overall because Kaveh’s [20] lighter design 
violates the design constraints. The results shown that our 
model (25436.49 lb) can decrease the structural weight by 
about 13 lb compared with the second best weight obtained 
by Pierezan [19] (25450.18 lb). It is interesting here that 
PINEFN outperforms the state-of-the-art unsupervised 
approach DUL (25547.90 lb) by Mai [28] in terms of both 
the quality of solution and computation cost. It is worth not-
ing that, for the DUL, the neural network as the optimal tool 
directly participated in the optimization process, but FEA is 
still required to determine the structural responses. Mean-
while, this numerical simulation was completely removed 
by PINEFN. Clearly, the computation time of PINEFN was 
reduced by more than 13 and 35 times compared with the 
DUL and DE, respectively. Furthermore, this leads to a sig-
nificant reduction in computational effort with the increas-
ing structural complexity. Several maximum and minimum 
values of constraints as well as their error are illustrated 
in Table 12. It is easily seen that the stresses found by 
the PINEFN agree well with the FEA and satisfy allow-
able stress constraint. Note that although the error of the 
17th member (1.2367%) is a little bigger than 1%, its stress 
value (0.0000 ksi) is very small compared to the the stress 

Table 12   Error of the constraints for the 200-bar planar truss

Elements Stress (ksi)

FEA PINEFN Error (%)

17 0.0000 0.0000 1.2367
19 0.0000 0.0000 0.9818
41 − 0.3415 − 0.3418 0.0774
64 − 9.6038 − 9.6038 0.0000
86 9.4741 9.4741 0.0000
101 − 9.9995 − 9.9994 0.0009
121 9.9782 9.9783 0.0017
122 9.9070 9.9067 0.0028
157 9.9770 9.9768 0.0017
173 − 10.0000 − 10.0000 0.0002
Max 9.9782 9.9783 1.2367
Min − 10.0000 − 10.0000 0.0000

Fig. 10   The weight convergence histories of the 200-bar truss 
obtained using the PINEFN and other algorithms

Table 13   Loading conditions 
for the 25-bar space truss (kips)

Node Case 1 Case 2

Fx Fy Fz Fx Fy Fz

1 0.0 20.0 -5.0 1.0 10.0 − 0.5
2 0.0 − 20.0 − 5.0 0.0 10.0 − 0.5
3 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.0 0.0 0.5 0.0 0.0
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limitation (10 ksi). The convergence histories in Fig. 10 pro-
vide a more detailed view of three different methods. As 
can be seen on the plot, the convergence rates of PINEFN 
and DUL are similar in shape and rapidly decrease at the 
beginning. It can be easily explained by the fact that both 
approaches utilized the neural network based on the gradi-
ent descent algorithm. However, the proposed method con-
verged better than the DUL at the training end. And this 
difference comes from the following reasons: (i) The sen-
sitivity of the DUL is calculated by the BP and automatic 
differentiation tool JAX, while the PINEFN only uses the 
BP; (ii) the structural responses obtained by the approximate 
solution of the FEA for the DUL whereas they are directly 
determined from the output values of the network for the 
present method. And this example is no exception to the DE 
algorithm which is the slowest convergence rate.

4.4 � 25‑bar space truss

A twenty five-bar spatial truss, as shown in Fig. 11, is exam-
ined as the next design optimization with stress and displace-
ment constraints. The modulus of elasticity is 10,000 ksi 
and the density is 0.1 lb/in3 for all members. Two loading 
cases given in Table 13 are considered for this structure. 
All members are categorized into 8 groups corresponding 
to the design variables as listed in Table 14. All displace-
ments of nodes are restricted in the interval [- 0.35, 0.35] in. 
In addition, the allowable stresses of members are listed in 
Table 14. To find the optimum weight, the network configu-
ration shown in Table 1 is used to train the model.

As previously investigated examples, the results obtained 
by the presented work and the other algorithms recently pub-
lished in the literature are summarized in Table 15. It is 
obvious from the data in this table that the optimum design 
obtained by PINEFN (545.22 lb) shows a strong agreement 

Table 14   Stress limitation for the 25-bar space truss

A i  (in2) Allowable compressive stress 
(ksi)

Allowable 
tension stress 
(ksi)

A
1

35.092 40.0
A

2
-A

5
11.590 40.0

A
6
-A

9
17.305 40.0

A
10

-A
11

35.092 40.0
A
12

-A
13

35.092 40.0
A
14

-A
17

6.7590 40.0
A
18

-A
21

6.9590 40.0
A

22
-A

25
11.082 40.0
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8
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Fig. 11   A 25-bar space truss structure

Table 15   Optimization results 
obtained for the 25-bar space 
truss

A i  (in2) Lee [10] Li [14] Kaveh [20] Degertekin [22] Mai [28] Camp  [21] PINEFN

DE DUL

A
1

0.047 0.010 2.662 0.0100 0.0100 0.0131 0.010 0.0127
A

2
-A

5
2.022 1.970 1.993 2.0712 1.9834 1.9515 2.092 1.9809

A
6
-A

9
2.950 3.016 3.056 2.9570 2.9984 2.9662 2.964 3.0039

A
10

-A
11

0.010 0.010 0.010 0.0100 0.0100 0.0125 0.010 0.0112
A
12

-A
13

0.014 0.010 0.010 0.0100 0.0100 0.0128 0.010 0.0114
A
14

-A
17

0.688 0.694 0.665 0.6891 0.6864 0.6968 0.689 0.6865
A
18

-A
21

1.657 1.681 1.642 1.6209 1.6776 1.7260 1.601 1.6771
A

22
-A

25
2.663 2.643 2.679 2.6768 2.6576 2.6430 2.686 2.6560

Wbest (lb) 544.38 545.19 545.16 545.09 545.16 545.71 545.38 545.22
CVEmax 0.206 None 2.06 None None None None None
Times (s) – – – – 104.07 49.47 – 6.68
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with Degertekin [22] (545.09 lb), DE [28] (545.16 lb), Li 
[14] (545.19 lb), and smaller than the other studies (DUL 
[28]: 545.71 lb; Camp [21]: 545.38 lb). Although the 
obtained results by Lee [10] (544.38 lb) and Kaveh [20] 
(545.16 lb) are relatively lighter than our method, the design 
constraints are violated. Furthermore, our model saved more 
than 15 and 7 times the computation cost compared to DE 
and DUL, respectively. Table 16 shows several constraints 
and their error with the FEA. Clearly, no any violations of 
constraints are observed here. In addition, the constraint 
error against to the FEA is less than 0.4%. And this once 
again proves the efficiency of the proposed work. A compari-
son of the convergence curve between the PINEFN, DUL, 
and DE is illustrated in Fig. 12. It is easily seen that the pro-
posed framework always converges much more rapidly than 

the DE and DUL. It only requires 1000 epochs, while the 
DUL and DE require 1500 and 8480 times of linear analysis.

4.5 � 72‑bar space truss

The next example deals with the design of 72-bar four-level 
skeletal tower, and the cross-sectional areas are categorized 
into 16 groups as illustrated in Fig. 13. All members are 
made of material having density of 0.1 lb/in3 , elasticity mod-
ulus of 10,000 ksi, and allowable stress of ±25 ksi. In addi-
tion, all displacements of nodes are restricted to ±0.25 in. It 
is subjected to two loading conditions, as listed in Table 17. 
Therein, the minimum design variables are defined as 0.1 
in2 and 0.01 in2 for cases 1 and 2, respectively. A network 
architecture with three hidden layers, 60 neurons per hidden 
layer, and 1,000 epochs is the finest performance for this 
application.

Tables 18 and 20 provide a comparison between the 
obtained result of the PINEFN and other available algo-
rithms in the literature for the optimal solution. In both 
cases, it is easily seen that the PINEFN found the lightest 
design with the least time and effort overall without violating 
constraints. More specifically, for the first case, it only takes 
8.93 s to gain the optimal solution, while DUL and DE need 
63.71 s and 488.14 s. Whereas its computational overhead 
(18.46 s) is 129 times less than that of the DE (2410.19 s) for 
the second case. Therefore, the present approach has proven 
again to be the most efficient for improving accuracy and 
reducing the computational effort. Besides, Tables 19 and 21 
provide comparisons of constraints found by the PINEFN 
and FEA using the obtained optimal solution. As the previ-
ously presented examples, the constraint results agree well 
with the FEA with the error less than 0.4%. Finally, Figs. 14 
and 15 depict the weight convergence histories of the present 

Table 16   Error of the 
constraints for the 25-bar space 
truss

Elements Stress (ksi) Dofs Displacement (in)

FEA PINEFN Error (%) FEA PINEFN Error (%)

1 5.2070 5.2056 0.0263 u
1

− 0.0195 − 0.0195 0.0263
2 − 7.0015 − 7.0016 0.0026 v

1
0.3500 0.3500 0.0004

3 6.9434 6.9434 0.0000 w
1

− 0.0289 − 0.0289 0.0045
6 − 6.5914 − 6.5913 0.0009 u

2
0.0195 0.0195 0.0263

7 4.8451 4.8451 0.0010 v
2

− 0.3500 − 0.3500 0.0004
10 − 1.7707 − 1.7702 0.0273 w

2
− 0.0289 − 0.0289 0.0045

12 − 1.8416 − 1.8410 0.0323 u
3

0.1116 0.1116 0.0025
14 − 2.6125 − 2.6124 0.0018 v

3
− 0.0403 − 0.0403 0.0046

15 1.0157 1.0158 0.0100 w
3

− 0.1000 − 0.1000 0.0008
18 5.3284 5.3285 0.0018 u

4
0.0978 0.0978 0.0017

19 − 6.9577 − 6.9575 0.0015 v
4

0.0270 0.0270 0.0065
22 − 1.1649 − 1.1649 0.0009 w

4
0.0573 0.0573 0.0034

Max 6.9434 6.9434 0.0323 – 0.3500 0.3500 0.0263
Min − 7.0015 − 7.0016 0.0000 – − 0.3500 − 0.3500 0.0004

Fig. 12   The weight convergence histories of the 25-bar truss obtained 
using the PINEFN and other algorithms
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method, DUL, and DE. As the previously discussed exam-
ples, the convergence speed of the learning process is faster 
than the other studies, and the optimal design is found only 
after 1,000 epochs.

4.6 � 120‑bar dome truss

To demonstrate the practical capability of the PINEFN, a 
120-bar dome truss structure was considered the last optimal 
design problem. Its configuration and dimensions can be 
found in Fig. 16. As shown in this plot, the cross-sectional 
areas of members, which are design variables, are classified 
into seven groups. The density, elasticity modulus (E), and 
yield stress ( �y ) of the steel material for all members are 
taken as 0.288 lb/in3 , 30,450 ksi, and 58.0 ksi, respectively. 
According to the AISC ASD (1989) [53], the allowable ten-
sile and compressive stresses are estimated as follows:

where �i denotes the slenderness ratio ( �i = kLi∕ri ); Li is 
the member length; k is the effective length factor; ri is the 
radius of gyration ( ri = aAb

i
 ); a and b are the constants that 

depend on the types of section of the members, and pipe 
section, with values 0.4993 and 0.6777, are used for bars, 
respectively; CC expresses the slenderness factor splitting 
the elastic and inelastic buckling regions ( CC =

√
2�2E∕�y ). 

The system is subjected to vertical loads in the negative 
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Fig. 13   A 72-bar space truss 
structure
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Table 17   Loading conditions 
for the 72-bar space truss (kips)

Node Case 1 Case 2

Fx Fy Fz Fx Fy Fz

17 5.0 5.0 − 5.0 0.0 0.0 − 5.0
18 0.0 0.0 0.0 0.0 0.0 − 5.0
19 0.0 0.0 0.0 0.0 0.0 − 5.0
20 0.0 0.0 0.0 0.0 0.0 − 5.0
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direction of the z-axis which are 13.49 kips at node 1, 6.744 
kips at nodes 2-13, and 2.248 kips at nodes 14-37. In addi-
tion to the stress constraints, the vertical displacement of 
free nodes under this loading is limited to 0.1969 in. The 
minimum values of the design variables are 0.775 in2 . To 

reach the goal, a network (4-60-60-60-2) with 1,000 epochs 
is chosen to perform the training.

A comparison of the results obtained by the present 
approach and other methods is reported in Tables 22 and 
23. As expected, our obtained result (32,505.93 lb) is much 

Table 18   Optimization results obtained for the 72-bar space truss (Case 01)

A i  (in2) Lee [10] Camp [21] Li [14] Kaveh [20] Degertekin [22] Bekdaş [50] Ehsan [51] Mai [28] PINEFN

DE DUL

A
1
-A

4
1.790 1.8577 1.857 1.9042 1.9064 1.8758 1.9298 1.8356 1.8606 1.8570

A
5
-A

12
0.521 0.5059 0.505 0.5162 0.5061 0.5160 0.5090 0.5359 0.5008 0.5047

A
13

-A
16

0.100 0.1000 0.100 0.1000 0.1000 0.1000 0.1000 0.1002 0.1015 0.1000
A
17

-A
18

0.100 0.1000 0.100 0.1000 0.1000 0.1000 0.1000 0.1001 0.1012 0.1000
A
19

-A
22

1.229 1.2476 1.255 1.2582 1.2617 1.2993 1.2467 1.2991 1.2635 1.2542
A

23
-A

30
0.522 0.5269 0.503 0.5035 0.5111 0.5246 0.5128 0.4959 0.5061 0.5037

A
31

-A
34

0.100 0.1000 0.100 0.1000 0.1000 0.1001 0.1000 0.1001 0.1014 0.1000
A
35

-A
36

0.100 0.1012 0.100 0.1000 0.1000 0.1000 0.1000 0.1007 0.1010 0.1000
A
37

-A
40

0.517 0.5209 0.496 0.5178 0.5317 0.4971 0.5298 0.4759 0.4971 0.4954
A

41
-A

48
0.504 0.5172 0.506 0.5214 0.5159 0.5089 0.5172 0.5140 0.5078 0.5078

A
49

-A
52

0.100 0.1004 0.100 0.1000 0.1000 0.1000 0.1000 0.1000 0.1018 0.1002
A

53
-A

54
0.101 0.1005 0.100 0.1007 0.1000 0.1000 0.1000 0.1043 0.1032 0.1004

A
55

-A
58

0.156 0.1565 0.100 0.1566 0.1562 0.1575 0.1564 0.1002 0.1003 0.1000
A

59
-A

66
0.547 0.5507 0.524 0.5421 0.5493 0.5329 0.5440 0.4932 0.5186 0.5223

A
67

-A
70

0.442 0.3922 0.400 0.4132 0.4097 0.4089 0.4106 0.3840 0.4013 0.3984
A

71
-A

72
0.590 0.5922 0.534 0.5756 0.5698 0.5731 0.5624 0.5658 0.5375 0.5356

Wbest (lb) 379.27 379.85 369.65 379.66 379.63 379.10 379.65 370.30 370.04 369.66
CVEmax 0.218 None 39.075 None None None None None None None
Times (s) – – – – – – – 488.14 63.72 8.93

Table 19   Error of the 
constraints for the 72-bar planar 
truss (Case 01)

Elements Stress (ksi) Dofs Displacement (in)

FEA PINEFN Error (%) FEA PINEFN Error (%)

16 0.2043 0.2041 0.0937 u
5

0.0173 0.0173 0.0011
21 − 3.8084 − 3.8084 0.0001 u

6
0.0400 0.0400 0.0131

43 − 2.4993 − 2.4993 0.0002 v
6

0.0400 0.0400 0.0131
45 − 2.4993 − 2.4993 0.0002 w

8
0.1209 0.1209 0.0012

49 4.1340 4.1327 0.0317 v
9

0.1209 0.1209 0.0012
52 4.1340 4.1327 0.0317 w

9
− 0.0751 − 0.0751 0.0055

54 5.4555 5.4538 0.0320 u
15

− 0.1168 − 0.1167 0.0399
55 − 23.8231 − 23.8151 0.0336 u

17
− 0.1168 − 0.1167 0.0399

56 0.2181 0.2176 0.2371 v
17

0.2500 0.2500 0.0018
57 − 7.1948 − 7.1925 0.0317 w

17
0.2500 0.2500 0.0018

58 0.2181 0.2176 0.2371 u
19

− 0.1183 − 0.1183 0.0081
60 − 5.6034 − 5.6029 0.0095 v

19
0.2133 0.2133 0.0031

Max 5.4555 5.4538 0.2371 – 0.2500 0.2500 0.0399
Min − 23.8231 − 23.8151 0.0001 – − 0.1183 − 0.1183 0.0011
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better than other studies (Kaveh [15]: 33,250.05 lb; Tala-
tahari [16]: 33,251.22 lb; Adil [54]: 33,249.75 lb) without 
violating constraints. Furthermore, the PINEFN obtained the 
minimum weight only after 20.89 s, while the DE algorithm 

gained the same weight (32,499.65 lb) with 2,311.08 s. Once 
again, our model saves a massive amount of computational 
effort, but yet still delivering high-quality optimal solutions, 
and the error constraints of PINEFN are less than 0.01%. In 
addition, a comparison of the convergence rates is shown 
in Fig. 17. The mass of structures rapidly decreases in the 
first 100 epochs and finds the solution only through 1,000 
epochs. Whereas the DE algorithm is still a long way from 
the target value. The above results have proven the efficiency 
and robustness of the proposed approach for the structural 
optimization without any numerical simulations.

5 � Conclusions

In this article, a physics-informed neural energy-force 
network framework has been successfully developed for 
solving the design optimization of truss structures. Its 
outstanding characteristic is that the structural analysis is 
purely removed during the optimization process, and only 
the neural network is built based on the physics laws to 
find the optimal structure. Herein, the self-adaptive pen-
alty function, known as the loss function, is derived based 

Fig. 14   The weight convergence histories of the 72-bar truss obtained 
using the PINEFN and other algorithms for the first load case

Table 20   Optimization results 
obtained for the 72-bar space 
truss (Case 02)

A i  (in2) Adeli [52] Adeli [31] Sarma [13] Lee [10] Li [14] This study

DE PINEFN

A
1
-A

4
2.0259 2.755 1.732 1.963 1.907 1.8909 1.8345

A
5
-A

12
0.5332 0.51 0.522 0.481 0.524 0.5195 0.5203

A
13

-A
16

0.0100 0.01 0.01 0.01 0.01 0.0100 0.0100
A
17

-A
18

0.01 0.01 0.013 0.011 0.01 0.0100 0.0101
A
19

-A
22

1.157 1.37 1.345 1.233 1.288 1.2914 1.3136
A

23
-A

30
0.569 0.507 0.551 0.506 0.523 0.5199 0.5176

A
31

-A
34

0.01 0.01 0.01 0.011 0.01 0.0111 0.0100
A
35

-A
36

0.01 0.01 0.013 0.012 0.01 0.0185 0.0109
A
37

-A
40

0.514 0.481 0.492 0.538 0.544 0.5225 0.5214
A

41
-A

48
0.479 0.508 0.545 0.533 0.528 0.5187 0.5188

A
49

-A
52

0.01 0.01 0.066 0.01 0.019 0.0100 0.0101
A

53
-A

54
0.01 0.064 0.013 0.167 0.02 0.1092 0.1014

A
55

-A
58

0.158 0.215 0.178 0.161 0.176 0.1769 0.1681
A

59
-A

66
0.55 0.518 0.524 0.542 0.535 0.5361 0.5377

A
67

-A
70

0.345 0.419 0.396 0.478 0.426 0.4491 0.4527
A

71
-A

72
0.498 0.504 0.595 0.551 0.612 0.5788 0.5838

Wbest (lb) 379.3 376.5 364.4 364.33 364.86 365.30 364.05
CVEmax – – – – – None None
Times (s) – – – – – 2410.19 18.46
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on the weight, complementary energy, and constitutive 
equations. Accordingly, the optimum weight of the struc-
ture is found at the end of the training when achieving the 
minimum loss. The robustness, efficiency, and reliability 
of the proposed framework are demonstrated through sev-
eral benchmarks for size optimization of truss structures. 
Numerical results have indicated that the optimum weight 
obtained by this study outperforms previously released 
works in terms of the quality solution, convergence speed, 
and computational cost. Furthermore, the PINEFN is also 
significant because we can easily perform the structural 
optimization without using any structural analyses. In 
addition, one of the interesting things about this para-
digm is that its learning possibility only relies upon the 
set of nodal coordinates which are known as the input data. 

Hence, the obtained results as well as the whole training 
data independent of the sampling techniques. Besides, the 
sensitivity analyses become easy and simple to implement 
by employing the automatic differentiation. In light of the 
above outstanding features, it is promising to offer a new 
route without using numerical solvers to handle complex 
issues in structural optimization.

Table 21   Error of the 
constraints for the 72-bar space 
truss (Case 02)

Elements Stress (ksi) Dofs Displacement (in)

FEA PINEFN Error (%) FEA PINEFN Error (%)

2 − 0.9253 − 0.9253 0.0001 u
8

− 0.0056 − 0.0056 0.0001
4 − 0.9253 − 0.9253 0.0001 u

14
− 0.0232 − 0.0232 0.0066

34 − 2.5996 − 2.5996 0.0001 u
15

− 0.0771 − 0.0771 0.0023
39 − 5.1629 − 5.1630 0.0019 v

15
0.1440 0.1440 0.0001

49 4.9770 4.9775 0.0091 w
15

0.1440 0.1440 0.0001
50 − 0.0569 − 0.0571 0.3693 u

17
− 0.0783 − 0.0783 0.0017

51 − 0.0569 − 0.0571 0.3693 v
17

0.2500 0.2500 0.0011
52 4.9770 4.9775 0.0091 w

17
0.2500 0.2500 0.0011

53 − 0.5119 − 0.5115 0.0718 u
18

− 0.0267 − 0.0267 0.0091
54 5.4321 5.4320 0.0023 u

19
-0.1059 − 0.1059 0.0007

55 − 16.8499 − 16.8501 0.0015 v
19

0.2115 0.2115 0.0004
57 − 4.7969 − 4.7967 0.0037 u

20
− 0.0267 − 0.0267 0.0091

Max 5.4321 5.4320 0.3693 – 0.2500 0.2500 0.0091
Min − 16.8499 − 16.8501 0.0001 – − 0.1059 − 0.1059 0.0001

Fig. 15   The weight convergence histories of the 72-bar truss obtained 
using the PINEFN and DE for the second load case
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Fig. 16   A 120-bar dome truss structure
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