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A B S T R A C T

In this work, a direct physics-informed neural network (DPINN) is first proposed to analyze the stability of
truss structures that incremental-iterative algorithm is completely removed from the implementation process.
Instead of resolving of nonlinear equations as in conventional numerical methods, a neural network (NN) is
employed to minimize the loss function which is designed to guide the training network based on the structural
instability information. In our computational framework, the parameters including weights and biases of the
network are considered as design variables. In addition, spatial coordinates of joints are examined as input
data, while corresponding displacements and load factor unknown to the network are taken account of output.
To address this challenge, the predicted outputs obtained by feedforward are utilized to establish the loss
function relied on the residual load and stiffness characteristics of the structure as the first stage. And then,
back-propagation and optimizer are applied to automatically calculate sensitivity and adjust parameters of the
network, respectively. This entire process known as training is repeated until convergence. To that end, the
position of the critical point is indicated as soon as the training ends by our network without using any time-
consuming incremental-iterative algorithms as well as structural analyses. Several benchmark examples of truss
structures associated with the geometric nonlinearity influence are investigated to evaluate the efficiency of
the proposed scheme. The obtained results reveal that the present framework is extremely simple to implement
and also yields the strong robustness as well as higher accuracy.
1. Introduction

In fact, nonlinear behaviors become significant in most of the struc-
tures, especially for the lightweight, slender, and complex geometry
designs such as bars, arches, shells, plates, etc [1,2]. Hence, they
must also be taken into account when analyzing the structural failure.
Therein, nonlinear stability analysis is an integral part and plays a
vital role in the structural design process [3,4]. It has received much
attention in the computational mechanics community. To investigate
the instability, critical points must be identified along the equilibrium
path, which is a major challenge for finite element analysis (FEA)
related to the singular solution [1].

In general, many different algorithms were developed by
researchers for solving structural stability problems. And therein, they
were commonly classified into two main groups called indirect and
direct methods. The first one relies on a detecting parameter that
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will be evaluated during each incremental load step to gain equilib-
rium [5–7]. For instance, Riks [8] tried to locate the limit point by
using Newton’s method. Simo et al. [9] introduced a scaling vector to
control the constraints for tracking limit points. In order to save the
computational effort, Shi and Crisfield [10] developed a semi-direct
approach to identify singular points. Besides, an exact technique for
the determination of critical points was delivered by Chan [11]. And
more recently, several alternatives have been developed to estimate the
singular points [12–14]. In spite of its success, some variants still face
challenges, such as increased computational cost due to intermediate
solutions and its dependency on incremental-iterative techniques as
well as control parameters. To circumvent these drawbacks, the direct
approach has been introduced, in which a system of nonlinear equa-
tions is derived to directly detect the critical points. During the last
decades, it has received much interest from researchers and achieved
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the remarkable success in this field [15–18]. Wriggers et al. [19] were
among the first authors to develop this method to find the singular
points. A critical displacement framework is developed for predicting
structural instability by Oñate and Matias [20]. Also, Battini et al. [21]
introduced an improved minimal augmentation approach for the elastic
stability of beam structures. Despite their remarkable success in the
stability analysis, they still have certain limitations. Firstly, as indicated
by Shi [1], it required a good starting vector, sufficiently close to
the singular point, and gradient information to obtain convergence.
Moreover, the criterion for selecting the starting point highly depends
on expert experience, as well as the incremental-iterative methods.

In recent years, machine learning (ML) has led to outstanding
achievements in computational mechanics such as materials science
[22,23], structural analysis [24,25], structural optimization [26–30],
fluid mechanics [31], structural health monitoring [32–36], and so on.
One of the machine ML models called the neural network have been
widely used in science and engineering [37]. Therein, physics-informed
neural network (PINN) has emerged as a new, powerful, and efficient
approach to solve problems in mechanics, and received increasing
attention in the engineering community in recent times. In contrast to
the data-driven approach, it incorporates governing physical laws as
well as given design data (e.g. boundary conditions (BCs), geometry,
properties of materials, etc.) into the training process of the model
with unknown solutions [24]. Indeed, PINN has successfully solved
complex problems, such as elasticity [38], plasticity [39,40], hypere-
lasticity [41,42], fluid [31,43], material [44,45], thermal [46,47], and
so on. However, it has still not been yet utilized for structural stability
analysis thus far.

To overcome the above-discussed challenge, a robust physics-
informed NN framework is firstly proposed in this study to directly
locate the first critical point of truss structures without using any
incremental-iterative algorithms. In place of solving the structural
stability problems as conventional methods, NN is designed to directly
locate the critical point by minimizing the loss function. Therein, the
weights and biases of the network are regarded as design variables.
And the geometry information containing coordinate values of joints is
considered as the input data which are easily gathered. In specific, it is
worth emphasizing that this approach relies on unsupervised learning,
so it only requires the input data and does not need corresponding
output data. In this work, the output values of the network are the
unknown displacement field and load factor which are expressed by
parameters of the network and the input values, respectively. And the
training process aims to seek them that the loss function is minimized.
To achieve such an objective, the predicted outputs of the network
obtained from the feedforward (FF), instability information, and BCs
are employed to design the loss function which includes the unbalanced
load and test function. The back-propagation (BP) and optimizer are
then used to automatically compute gradient and update network
parameters. This process is repeated until convergence. And finally,
the position of the critical point corresponding to the NN’s optimal
parameters is found instantly at the training process ends without using
any incremental-iterative techniques. The efficiency and applicability
of the proposed model are also demonstrated through several numerical
examples to analyze the stability of truss structures. The obtained
results showed that DPINN not only simple in procedure, but also yields
higher accuracy.

The remainder of this work is structured as follows. Section 2
presents a brief outline of the stability analysis. Next, Section 3 de-
scribes a robust direct physics-informed NN framework. In Section 4,
several truss structures are tested to show the accuracy, effectiveness,
and robustness of our approach. Finally, Section 5 outlines some of the
most important conclusions.
2

Fig. 1. Schematic representation of snap-through and bifurcation points.

Fig. 2. Indirect approach using bi-section method.

2. Elastic structural stability

The primary objective of structural stability analysis is to determine
the position of critical points. And their outstanding characteristic is a
singular tangent stiffness matrix 𝐊𝑇 [12]. When the structural system
may lose its stability in dealing with various geometrical or material
properties or both changes. However, this work only considers the
effect of geometrical changes on the instability arising. Based on the
phenomena of structural instability, there are two types of singular
points: limit (snap-through) and bifurcation points, as shown in Fig. 1.
Note that the sign of the determinant of the stiffness matrix 𝐊𝑇 changes
in the vicinity of the limit point, whereas it does not vary with the
bifurcation point [48].

For the indirect method, its underlying principle relies on the combi-
nation of a test function and numerical methods to estimate the singular
point [49,50]. And this test function allows evaluating the positive
definiteness of 𝐊𝑇 such as the determinant, smallest pivot, smallest
eigenvalue, etc. This scheme is illustrated in Fig. 2 where Bisection
method is applied to locate the singular point (5) based on the sign
change of the test function 𝜏.

Hau
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Fig. 3. The whole process of the direct instability-informed neural network framework.
In the second tactic, the direct procedure, which is known as one
of the most powerful techniques, was developed and widely applied in
structural stability analysis to enhance computational efficiency [15–
17]. As noted in this procedure, the critical points are indicated directly
by solving a system of nonlinear equations consisting of the equilibrium
and test functions [51]. The interested reader is referred to [2] for more
details about deriving them. It is worth mentioning that the iterative
method is used only to obtain the singular point, and there would not
trace the behavior of the structure for the direct methods.

3. Direct physics-informed neural network framework

A direct physics-informed NN framework is first presented in this
section to detect the point of structural instability. Herein, the NN acts
as an identification model to detect the critical point by minimizing
the loss function, and its whole process is shown in Fig. 3. According
to the flow diagram, the initial parameters of the network were set to
zeros, which corresponds to the unloading state of the structure. The
coordinates of each joint are treated as a training data point, while
unknown displacements and load factors are referred to as output data.
As a consequence of these outputs, loads, and BCs, the loss function
involving the residual load and property of the stiffness matrix is
established to minimize by the training process. To achieve the goal,
FF, BP, and optimizer are employed to adjust the parameters. As soon as
the training process completed, the first critical point will be located by
our model corresponding to the minimum loss function. To understand
clearly our approach, the following sub-sections represent in greater
detail the input data, training NN, and designing loss function.

3.1. Training data

It should be noted that all training data of DPINN contains only
a collection of coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and BCs of all structural joints.
Obviously, it is easily obtained from the geometric information of the
structure. Furthermore, for planar and space structures, its size is small
(𝑚 × 2) and (𝑚 × 3), respectively. Here 𝑚 is the number of joints, while
2 or 3 denotes the number of spatial coordinates for a two-dimensional
or three-dimensional truss. In addition, the displacements and load
factors are unknown quantities, and not contained in the training data.
Alternatively, they are the outputs of the network, which need to be
estimated to minimize the loss function. Once trained, the proposed
network is easily able to identify the critical point corresponding to
the outputs.

3.2. Neural network

As one of the ML models, the NN has been widely used to assist
in decision-making for various problems. It mimics the human brain
activity that the relationship between the outputs and inputs is found
3

by training. For illustration, a fully connected NN with three layers as
a baseline architecture is depicted in Fig. 4. Therein, the first layer is
known as the input layer which includes three units with respect to
the coordinates (𝑥, 𝑦, 𝑧). The second layer is referred to as a hidden
layer with 𝑚ℎ units. Herein, the number of hidden units deals with the
complexity of the problems. And the output layer is the final layer with
four neurons corresponding the predicted displacements and load factor
(𝜆̂, 𝑢̂, 𝑣̂, 𝑤̂). All units of the previous layer are connected to all neurons in
the present layer via the weights 𝐖(𝑙) and biases 𝐛(𝑙), which are called
the parameters of the NN.

The training process aims at adjusting these parameters of the
network to minimize the loss function. According to achieve this goal,
two algorithms including FF and BP are utilized and they will repeat
over and over until a convergence criterion is satisfied. Firstly, the FF
is applied for mapping data from the input to output neurons which
is expressed as 𝐈̂: R3 → R4. And then, the governing relation between
system inputs and outputs of each layer is expressed as

input layer ∶ 𝐨̂0 = [𝑥, 𝑦, 𝑧] ∈ R3,

hidden layer ∶ 𝐨̂1 = 𝑓1
(

𝐖(1)𝐨̂0 + 𝐛(1)
)

∈ R𝑚ℎ ,

output layer ∶ 𝐨̂2 = 𝑓2
(

𝐖(2)𝐨̂1 + 𝐛(2)
)

=
[

𝜆̂, 𝑢̂, 𝑣̂, 𝑤̂
]

∈ R4,

(1)

where 𝑓 (.) denotes the activation function. Its role is to add non-
linearity to the network by deciding whether a neuron should be
activated or not, which makes the network capable of learning about
the complete relationship between the inputs and outputs. There are
some common choices, such as ReLU, LeakyReLU, Linear, Sigmoid,
Softmax, Tanh, and so on. 𝐨̂1 and 𝐨̂2 are in turn the output of the hidden
and output layers.

Based on the output values in the first phase, a loss function 
is built to minimize. Next, BP is applied to achieve the sensitivity of
the loss concerning the parameters of the network. As a consequence,
their values are adjusted in the direction of the gradient descent, as
represented below

𝑡+1𝑊 (𝑙)
𝑝𝑞 = 𝑡𝑊 (𝑙)

𝑝𝑞 − 𝜂 𝜕
𝜕𝑡𝑊 (𝑙)

𝑝𝑞

,

𝑡+1𝑏(𝑙)𝑝 = 𝑡𝑏(𝑙)𝑝 − 𝜂 𝜕
𝜕𝑡𝑏(𝑙)𝑝

𝑓𝑜𝑟 1 ≤ 𝑙 ≤ 2,
(2)

where 𝜂 denotes the learning rate; 𝑝 and 𝑞 refer to the number of
neurons in the 𝑙th and (𝑙 − 1)𝑡ℎ layer, respectively; 𝑡 is the number of
iterations. Finally, the loss function will converge to the minimum value
after 𝑡 iterations.

3.3. Loss function

Obviously, we strictly define the residual load vector 𝐠
(

𝐮̂, 𝜆̂
)

and
tangent stiffness matrix 𝐊𝑇 with the obtained displacement field and
load factor by FF. In order to achieve the strain, a space truss element
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𝜃𝜃
Fig. 4. A fully connected neural network.

Fig. 5. Deformation of a space truss member.

in the initial and predictive configurations is considered as shown in
Fig. 5. The coordinates of the member

(

𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2
)

present
the original configuration. Hence, the initial length 𝓁0 of the element
is defined as follows

𝓁0 =
√

𝓁2
0𝑥 + 𝓁2

0𝑦 + 𝓁2
0𝑧, (3)

where 𝓁0𝑥 = 𝑥2 − 𝑥1; 𝓁0𝑦 = 𝑦2 − 𝑦1; 𝓁0𝑧 = 𝑧2 − 𝑧1.
Let

(

𝑢̂1, 𝑣̂1, 𝑤̂1, 𝑢̂2, 𝑣̂2, 𝑤̂2
)

correspond to predicted displacements
of the predictive configuration. Thus, the predictive length 𝓁𝑝 of the
element is defined as follows

𝓁𝑝 =
√

𝓁2
𝑝𝑥 + 𝓁2

𝑝𝑦 + 𝓁2
𝑝𝑧, (4)

in which 𝓁𝑝𝑥 = 𝓁0𝑥 + 𝑢̂2 − 𝑢̂1; 𝓁𝑝𝑦 = 𝓁0𝑦 + 𝑣̂2 − 𝑣̂1 and 𝓁𝑝𝑧 = 𝓁0𝑧 + 𝑤̂2 − 𝑤̂1.
It can be seen that the axial strain is easily obtained from 𝓁0 and

𝓁𝑝. According to Crisfield et al. [52], Green’s strain is defined as

𝜀 =
𝓁2
𝑝 − 𝓁2

0

2𝓁2
0

. (5)

Once the strain is found, the internal force vector of the 𝑘th member
is given by

𝐟 = 𝐸 𝐴 𝜀 𝓁(𝑘)𝐛 , (6)
4

𝑘 𝑘 𝑘 𝑘 0 𝑘
where E and A are the elastic modulus and the cross-section area,
respectively; the vector 𝐛 is defined as follows

𝐛𝑇𝑘 = 1
𝓁(𝑘)
0

[

−𝓁(𝑘)
𝑝𝑥 −𝓁(𝑘)

𝑝𝑦 −𝓁(𝑘)
𝑝𝑧 𝓁(𝑘)

𝑝𝑥 𝓁(𝑘)
𝑝𝑦 𝓁(𝑘)

𝑝𝑧

]

. (7)

Hence, the residual load vector 𝐠(.) is strictly determined by the
global internal force 𝐟 , external forces 𝐪, and load factor 𝜆̂, which is
expressed by

𝐠
(

𝐮̂, 𝜆̂
)

= 𝐟 (𝐮̂) − 𝜆̂𝐪, (8)

where 𝐮̂ (𝐱, 𝐲, 𝐳, 𝜃𝜃𝜃) is the displacement field with the fulfilled boundary
conditions; 𝜃𝜃𝜃 denotes the parameter vector of the network including
weights and biases; 𝐱, 𝐲, and 𝐳 are the coordinate vectors of the joints;
𝜆̂ is computed by a sum of the predicted load factor components 𝜆𝑖, as
follows

𝜆̂ =
𝑛
∑

𝑖=1
𝜆̂𝑖 (𝑥, 𝑦, 𝑧, 𝜃). (9)

The tangent stiffness matrix of the 𝑘th element is obtained by
differentiating the internal force vector with respect to the nodal dis-
placements, which is given by

𝐊(𝑘)
𝑇 = 𝐸𝑘𝐴𝑘𝓁

(𝑘)
0 𝐛𝑘𝐛

𝑇
𝑘 +

𝐸𝑘𝐴𝑘𝜀𝑘
𝓁(𝑘)
0

[

𝐈3 𝐈3
𝐈3 𝐈3

]

, (10)

in which 𝐈3 is the identity matrix of order 3. Obviously, the global
stiffness matrix 𝐊𝑇 is easily derived by assembling the element stiffness
matrices.

According to indicate the critical point, the loss function of the
DPINN is designed relying on a sum of the residual load and test
function. And its mathematical formulation is expressed as follows

 = ‖

‖

‖

𝐠
(

𝐮̂, 𝜆̂
)

‖

‖

‖

2
+ min

(

𝑑𝑖𝑎𝑔(𝐃2)
)

, (11)

where 𝐃 is a diagonal matrix obtained by singular value decompo-
sition (SVD) of the 𝐊𝑇 , which is given by

𝐊𝑇 = 𝐋𝐃𝐋𝑇 . (12)

In this study, the lowest entry of the main diagonal of 𝐃 is selected
as a test function, so the eigenvalues of 𝐊𝑇 and the main diagonal of
𝐃 are the same roles. Furthermore, it allows to reducing computational
costs for solving the problem [12,53,54]. Note that this work is im-
plemented in the library of PyTorch with Python language. Hence, the
computation of the SVD of 𝐊𝑇 becomes easily dealt with by utilizing a
LINALG tool which is availably integrated into the PyTorch library.

Instead of resolving the system of nonlinear equations consisting
of the residual load and the test function as the conventional direct
method [2], its residual as a loss function is minimized by our approach
to indicate the optimal parameters 𝜃𝜃𝜃∗ of the network.

𝜃∗ = argmin
𝜃𝜃𝜃

( (𝜃𝜃𝜃) ) . (13)

It should be noted that the complex sensitivity analysis regarding
computing the derivatives of the loss function with respect to each
of all parameters can be easily dealt with by utilizing an automatic
differentiation tool which is availably integrated into the PyTorch
library. Once the network is trained, the critical point is found at the
minimum of the loss function corresponding to the optimal parameters
without using any incremental-iterative methods.

4. Numerical experiments

In the following, several well-known benchmark problems are inves-
tigated to demonstrate the simplicity, efficiency, and robustness of the
proposed procedure for the stability analysis of truss structures. The
found results using DPINN compare with results of existing conven-
tional approaches in the literature and the indirect approach combined
with Bisection method (Indirect-BM). Note that the total Lagrangian
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Fig. 6. Two bar planar truss.

kinematic description was employed to build the loss function of the
DPINN for all numerical examples. As mentioned in Section 3.1, the
number of input and output neurons are fixed for each problem, and
it is easy to estimate. Therein, the number of neurons in each hidden
layers is set equal for all the network. Additionally, the developed
shallow networks consist of 1 to 2 hidden layers with no more than
50 neurons in each hidden layer. In order to the optimal architecture
of the network, the trial-error and grid search methods were applied
to find out the number of hidden layers as well as hidden neurons.
In addition to perform the training, Adam [55] with a learning rate
of 0.01 was utilized as an optimizer in this work. Besides, the linear
transfer and hyperbolic tangent activation functions were employed for
the output and hidden layers, respectively. It should be noted that all
initial parameters of the network including weights and biases are set
to zeros. Finally, the relative error in the L2 norm is used as one of the
criteria to evaluate the accuracy of DPINN.

4.1. Two-bar planar truss

A simple two-bar planar truss, as illustrated in Fig. 6, is examined
as the first numerical example for the stability analysis. The cross-
sectional area and Young’s modulus of all truss members are set as A
= 6.53 cm2 and E = 20500 kN/cm2, respectively. A concentrated load
P𝑣 is applied at the center, and its maximum value is 50 kN. To reach
the goal, a three-layer network (2-10-3) is established for finding the
critical point with 1,000 epochs. The exact solution of this problem
was given by Pecknold et al. [56], where the stability of structure
related to various geometrical and stiffness k𝑠 of the spring. And the
nondimensional constant K𝑢 presents the combined nonlinear effects,
as expressed below

𝐾𝑢 =
𝑘𝑠ℎ

𝐴𝐸sin3
(

𝛼0
)
. (14)

In particular, if K𝑢 is greater than or equal to 0 and less than 1, there
exist two distinct limit points on the primary path, and their position
is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑐𝑟1,2 = 𝐴𝐸sin3
(

𝛼0
)

[

𝐾𝑢 ± 2
(

1−𝐾𝑢
3

)3∕2
]

,

𝑣𝑐𝑟1,2 = ℎ
[

1 ∓
√

1−𝐾𝑢
3

]

.
(15)

When K𝑢 is set equal to 1, a unique snap-through exists at
{

𝑃𝑐𝑟 = 𝐴𝐸sin3
(

𝛼0
)

,
𝑣𝑐𝑟 = ℎ.

(16)

And there is no snap-through phenomenon for other K𝑢 values. In
this example, the effective performance of the DPINN is evaluated with
several values of K𝑢 such as 0, 0.25, 0.5, 0.75, and 1.

Firstly, this structure is considered for the case K𝑢 = 0. As can
be seen from Table 1, the analysis results obtained from the DPINN,
including the first limit point, relative error, eigenvalue, residual, as
well as minimum loss function, are a good agreement with the exact
5

Fig. 7. Logarithm of loss function with varying hidden neurons and layers.

Fig. 8. The loss convergence history of the two-bar truss with K𝑢 = 0.

solution for all strain measures. It is easily seen that the relative errors
are smaller than 0.2%. Obviously, Green’s strain is the best measure
with the smallest error (0.0784%). Additionally, its loss function value
including the eigenvalue of stiffness matrix and residual load vector is
closest to zero among all four measures. Thus, Green’s strain is utilized
throughout the present work.

Based on the above architecture, a survey is adopted to investigate
the influence of optimizer and activation function on the accuracy of
the model. Accordingly, Table 2 reports the relative errors of the exact
and the predicted results. From the data in this table, it is easily seen
that Adam and Tanh are the best optimizer and activation function,
respectively. On the contrary, Adadelta and Softmax are the worst
choices. Obviously, the combination of Adam and Tanh gives the lowest
relative error of 0.078%, so it is chosen for the training phase. At the
same time, the grid search procedure is applied to optimize the number
of hidden neurons and layers. The minimum loss function values are
shown in Fig. 7 for each case. According to the obtained results, it
can be observed that increasing the number of hidden layers or hidden
neurons does not always improve the accuracy of the model. And it
is plain that the network architecture with a single hidden layer and
ten neurons is the most suitable for this example with the smallest loss
function (1.01 × 10−13).
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Fig. 9. Load–deflection curve for the two-bar truss with K𝑢 = 0.
Fig. 10. Effect of the spring stiffness on the structural stability.

Fig. 11. Simple arch-truss structure.

Table 1
Comparison results obtained for the two-bar truss in searching the first snap-through
point with K𝑢 = 0.

Results Exact DPINN

Solution [56] Engineering Green Log Almansi

v𝑐𝑟1 (cm) 8.4530 8.4577 8.4594 8.4593 8.4626
P𝑐𝑟1 (kN) 6.1414 6.1492 6.1465 6.1517 6.1567
Relative error (%) – 0.0873 0.0784 0.1162 0.1734
Eigenvalue (10−6) – 0.4055 0.2375 0.4511 0.4493
Residual (10−6) – 0.7851 0.2117 0.9070 2.0714
Loss (10−12) – 0.7808 0.1012 1.0262 4.4927
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Table 2
Relative error % of the first limit point with various activation functions and optimizers
for the case K𝑢 = 0.

Activation Optimizers

function Adam RMSprop Rprop Adagrad Adamax Adamw SGD Adadelta

Softmax 0.092 9.996 0.909 24.602 3.639 1.006 60.280 51.920
Sigmoid 0.087 0.680 0.278 23.491 7.170 1.968 42.092 13.673
Softplus 0.095 0.202 0.230 2.544 1.155 1.526 2.781 16.397
ReLU 0.087 0.151 0.117 1.494 0.408 0.643 0.751 1.618
Softsign 0.087 0.093 0.120 0.283 0.110 0.195 0.382 0.576
Tanh 0.078 0.088 0.099 0.089 0.097 0.122 0.199 0.112

The convergence curve depicted in Fig. 8 describes a detailed perfor-
mance view of the proposed procedure. From the displayed result, the
convergence rate at the first 100 epochs is very large and the optimal
solution reaches after 800 epochs. On the other hand, the equilibrium
path and the limit points are illustrated in Fig. 9. Firstly, it can easily
be seen that the load–deflection curve at node 2 obtained with the
FEA using arc-length was a good agreement with the exact closed-
form solution. It follows readily from this result that the mechanical
characteristics of geometric nonlinearity, including the residual load
vector and stiffness matrix, as well as the arc-length method are enough
reliability to solve the nonlinear structure problem. As shown in Fig. 9,
there were two distinct limit points where the tangent stiffness matrix
determinants are zeros. Clearly, it was a strong agreement among the
first critical point L1 obtained by DPINN (6.1465 kN) to the exact
solution (6.1414 kN) with a very small error (0.083%).

To evaluate the robust performance of DPINN, the structural stabil-
ity due to varying K𝑢 will also be carefully considered. Accordingly,
the location of the first critical points obtained by DPINN and the
exact closed-form are mentioned in Table 3 and shown in Fig. 10. As
observed, the results found by the NN are very close and agree well
with the exact solution. More concretely, the relative errors are smaller
than 0.08% for the nondimensional spring constants of 0, 0.25, 0.5, and
0.75, while this value is 0.38% at K𝑢 =1. It is easily explained that the
fidelity susceptibility at the first critical point and its vicinity for the
case K𝑢 =1 does not exhibits a sharp peak as in other cases. And this
point looks like a saddle point of the optimization problem. It often
poses a serious challenge to the conventional approaches in achieving
the goal, so it is very sensitive to the parameters of the numerical
method. It is clear that DPINN shows its effectiveness and accuracy for
locating the first critical point with a relative error smaller than 0.4%
when the stability change.
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Fig. 12. Structural response of the simple arch truss: load-deflection curve and critical points.
Fig. 13. Star dome structure with 30 members.
Table 3
Comparison results obtained for the two-bar truss in searching the first snap-through point with varying K𝑢.
Results Exact Solution [56] DPINN

K𝑢 = 0 K𝑢 = 0.25 K𝑢 = 0.5 K𝑢 = 0.75 K𝑢 = 1 K𝑢 = 0 K𝑢 = 0.25 K𝑢 = 0.5 K𝑢 = 0.75 K𝑢 = 1

v𝑐𝑟1 (cm) 8.453 10.000 11.835 14.226 20.000 8.459 10.005 11.836 14.221 20.097
P𝑐𝑟1 6.141 7.978 10.149 12.734 15.956 6.146 7.983 10.155 12.739 15.956
Relative error (%) – – – – – 0.078 0.057 0.037 0.038 0.380
Eigenvalue (10−6) – – – – – 0.238 0.522 0.745 1.967 5.960
Residual (10−6) – – – – – 0.212 1.426 2.630 0.542 8.381
Loss (10−12) – – – – – 0.101 2.305 7.474 4.163 105.762
7



Finite Elements in Analysis & Design 216 (2023) 103893H.T. Mai et al.
Fig. 14. Structural response of the star dome truss: load-deflection curve and critical points.
Fig. 15. Triangular truss dome.
Fig. 16. Load-deflection curve and critical points of the triangular truss dome.
4.2. Simple arch-truss structure

A simple arch-truss structure is investigated as the second example
for the stability analysis, as shown in Fig. 11. The geometry, loading,
8

and properties of the material are dimensionless, and all members
are the same with EA = 5000. The vertical force P is applied at the
top node with the allowable maximum value of 5. This structure is
widely used by researchers, such as Wriggers [19], Oñate [57], and
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Fig. 17. Star dome truss with 24 bars.

Qian [58] for evaluating the performance of the algorithms. In this case,
the network architecture, including two hidden layers and 15 neurons
in each hidden layer, is selected for the training process with 1,000
epochs.

As previously proposed, the obtained stability analysis results by
DPINN compared with other studies are shown in Table 4 and Fig. 12.
Therein, the magenta dashed box at the lower left of Fig. 12a is
magnified to Fig. 12b. It can be seen from the response curves that
this structure exhibits two stability modes due to the bifurcation and
limit points. As shown in Fig. 12b, the bifurcation point B1 is the first
critical point that occurs before the reached snap-through point L1.
As expected, the bifurcation point is found by DPINN (P𝑐𝑟1 =3.4612),
which is a good agreement with the previous studies. Although the
relative error gained by Qian [58] (0.1153%) is slightly lighter than
the DPINN (0.2548%), it is small and negligible. While the indirect
approach using Bisection method only found the limit point L1. This
can easily be explained by the determinant does not change its sign
in the vicinity of the bifurcation B1, so several indirect methods are
impossible to interpolate with the determinant [1]. Clearly, the DPINN
outperforms the indirect-BM although it requires more computational
times. Furthermore, the traditional approaches, including direct and
indirect tactics, usually depend on the initial value selection, as well as
control parameters of the incremental-iterative procedures [1,12,21].
In the converse direction, our approach allows us to identify the
instability point without using any incremental-iterative techniques. In
addition, the initial state without external loads is fixed as a starting
point in all experiments. Hence, the DPINN is significantly easier to
implement than conventional methods.

4.3. 30-bar dome truss

Next, the stability analysis of the 30-bar dome space truss is in-
vestigated as the third example, which has been previously introduced
by Kwok [59] and Oñate [20]. The finite element representation and
coordinates of nodes are shown and listed in Fig. 13 and Table 5,
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Table 4
Comparison results obtained for the simple arch-truss structure in searching the
bifurcation point.

Results Wriggers [19] Oñate [57] Qian [58] Indirect-BM DPINN

w𝑐𝑟1 0.0293 – 0.0294 0.0423 0.0293
P𝑐𝑟1 3.4700 3.4700 3.4740 3.7895 3.4612
Relative error (%) – – 0.1153 9.2151 0.2548
Times (s) – – – 4.6863 45.8369

Table 5
Coordinates of the node points of star dome structure.

Node X Y Z

1 0 0 0
3 −15 25.981 1.5
4 −30 0 1.5
9 0 60 6
10 −30 51.962 6
11 −51.96 30 6
12 −60 0 6

Table 6
Comparison results obtained for the 30-bar dome truss in searching the first critical
point.

Results Kwok [59] Oñate [20] Indirect-BM DPINN

w𝑐𝑟1 0.5160 0.5560 0.5475 0.5557
P𝑐𝑟1 79.5000 79.0200 79.7927 79.8129
Relative error (%) − 0.6059 0.3704 0.3967
Times (s) − − 9.1752 63.8789

respectively. The vertical 𝑧-direction force P is applied at the apex of
the star dome with the allowable maximum value of 100. The structural
properties of all members are the same, dimensionless, and are equal
to EA = 106. In addition, a NN (3-10-4) with 1,000 epochs is the finest
performance for this application.

Table 6 and Fig. 14 provide a comparison between the result of
the DPINN and other available algorithms in the literature for the first
snap-through point. As can be seen in Fig. 14b, DPINN outperforms
the other two studies. Clearly, the position of the first limit point
obtained by the NN lies on the primary path, making the determinant of
the stiffness matrix zero, while the other works can only approximate
one of the two conditions mentioned above, as shown in Fig. 14(b).
It is easily explained that the approaches of Kwok [59], Oñate [20]
and the indirect-BM employed the incremental-iterative procedure.
Consequently, it is very sensitive to the control parameters and often
produces errors at large curvature positions [1,12,21]. Although the
computational time of DPINN (63.8789 s) is larger than the indirect-BM
(9.1752 s), it also yields higher accuracy.

4.4. Regular-triangular truss dome

Next, a regular-triangular truss dome is illustrated in Fig. 15. The
material properties of all members are considered the same EA =
1, with the consistence unit. A concentrated force P in the positive
direction of the 𝑧-axis is applied on the free nodes. As in the previous
example, this structure contains two stability modes that deal with the
bifurcation and limit points, respectively. A NN architecture with one
hidden layer, 45 nodes per layer, and 1,000 epochs is designed for the
training process.

Likewise, the stability analysis results achieved by this work are
summarized in Table 7 for a comparison with another study. And a
very good agreement is easily found between DPINN and Fujii [54]
with a very small relative error of 1.62 × 10−4. While the indirect-
BM failed to indicate the first critical point B1. Once again shows the
present work demonstrates its robustness and effectiveness in detecting
the singular point. The equilibrium paths of the structure at node 3
are plotted in Fig. 16. Here two different types of critical points exist
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Fig. 18. Case 01: Load-deflection curve and critical points of the 24-bar dome truss.
Fig. 19. Case 02: Load-deflection curve and critical points of the 24-bar dome truss.
Table 7
Comparison of results of the triangular truss dome for searching the bifurcation point.

Results Fujii [54] Indirect-BM DPINN

w𝑐𝑟1 15.4131 20.0361 15.41309
P𝑐𝑟1 0.2219 0.2363 0.22195
Relative error (%) − 29.9907 0.0003
Times (s) − 12.1417 59.2046

in this structure, one for the bifurcation points (B1, B2, B3, B4), the
other one for the limit points (L1, L2). And along the primary path, the
first bifurcation point B1 occurs first and then L1, B2 points follow in
sequence. Hence, the first buckling mode is found at P𝑐𝑟1 = 0.22195 for
the instability of this structure. As the previously presented example,
the current approach requires the higher computational cost (59.2046
s) compared to the indirect-BM (12.1417 s), but the DPINN shows its
efficiency in significantly improving the accuracy.
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4.5. Star dome truss

A star dome truss containing 24 members shown in Fig. 17 is consid-
ered as the last example. All members are assigned the same property
of material EA = 10,000 with consistence unit. It is subjected to
concentrated forces in the positive direction of the 𝑧-axis. Three loading
cases given in Table 8 are considered. It has been examined previously
by Papadrakakis [60], Oñate [20], Irles [61], and Crisfeld [52]. To
identify the critical point, the network configuration with one hidden
layer, 15 hidden neurons, and 1,000 epochs is chosen to perform the
stability analysis.

Table 9 compares the results obtained by the present approach and
other methods. Next, a detailed discussion of each case is proposed. The
limit point causes the loss of stability of the structure in the first case,
as shown in Fig. 18. It is clear from the data in Table 9 and Fig. 18b that
the obtained result of the DPINN reveals a fairly good agreement with
the indirect-BM and outperforms the other algorithms. More concretely,



Finite Elements in Analysis & Design 216 (2023) 103893H.T. Mai et al.
Fig. 20. Case 03: Load–deflection curve and critical points of the 24-bar dome truss.
.

Table 8
Loading conditions for dome truss with 24 bars.

Case Nodes

1 2 3 4 5 6 7

Loading 1 P 0 0 0 0 0 0
Loading 2 P P P P P P P
Loading 3 P/2 P P P P P P

Table 9
Comparison results obtained for 24-bar dome truss in searching the first critical point

Results Loading 1

Papadrakakis [60] Oñate [20] Indirect-BM DPINN

w𝑐𝑟1 0.7610 0.7690 0.7690 0.7683
P𝑐𝑟1 3.1570 3.0960 3.1563 3.1564
Relative error (%) – 1.8945 0.2462 0.2267
Time (s) – – 7.7660 59.5033

Loading 2

Irles [61] Oñate [20] Indirect-BM DPINN

w𝑐𝑟1 0.8820 0.8870 0.8766 0.8794
P𝑐𝑟1 7.8100 7.9700 7.7211 7.8111
Relative error (%) – 2.0367 1.1326 0.0363
Time (s) – – 6.1286 51.4365

Loading 3

Crisfeld [52] Indirect-BM DPINN

w𝑐𝑟1 0.1796 0.8207 0.1797
P𝑐𝑟1 8.6800 18.2628 8.6816
Relative error (%) – 110.6244 0.0190
Time (s) – 16.4905 56.2447

the first limit points obtained by two methods are found at the position
on the equilibrium path where the determinant of the stiffness matrix
vanishes. While the other results only approximate one of the two
conditions. The second case is examined to evaluate the effect of large
curvature change at the snap-through. From Fig. 19, it can easily be
seen that the first singular point L1 is a vertex of the primary path. It
is obvious that the NN is very close to Irles [61] with a small relative
error of 0.0363% and better than Oñate [20] (2.0367%) and indirect-
BM (1.1326%). And the last case, the complex response involves the
11

critical points which are closely located on the primary path, as shown
in Fig. 20. As expected, the present work shows quite a good efficiency
for the first critical point detection with a very small relative error
of 0.019%. Meanwhile, the indirect-BM only found the limit point L1
instead of the bifurcation point B1. Although the DPINN requires a
computational effort for training compared with the indirect-BM, the
above results have proven the simplicity, efficiency, and robustness of
the present approach for stability analysis.

5. Conclusions

In this article, a robust physics-informed NN framework is success-
fully developed for predicting structural instability. Accordingly, the
network is built to parametrize the displacement field and load factor.
In order to achieve the objective, a newly suggested loss function,
which contains the residual load vector and property of the tangent
stiffness matrix is established to guide the learning network. Therein,
the parameters of the NN including weights and biases are design
variables which are found by training to minimize the loss function
corresponding to the position of the critical point. The simplicity,
efficiency, and robustness of the proposed framework are demonstrated
through several benchmark problems for the stability analysis of truss
structure. Numerical results indicated that the first critical point at-
tained by this work outperforms previously released works. Further-
more, the DPINN yields a simple and easily method to perform the
stability analysis without utilizing any incremental-iterative techniques
as well as structural analyses. In addition, one of the intriguing aspects
of this paradigm is that its learning capability only relies upon the set
of nodal coordinates which are known as the input data. Hence, the
obtained results as well as the whole training data independent of the
sampling techniques. Besides, the sensitivity analyses become easy and
simple to implement by utilizing the automatic differentiation. In light
of the above outstanding features, it is promising to offer a state-of-
the-art approach without using numerical solvers to resolve complex
issues in the structural stability analysis, such as thin-wall, plate, shell
structures, etc.
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