Deep learning used in optimization problems
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Abstract: Optimization problems in engineering often find the minimum or maximum value
of the objective function under a prescribed set of constraints. Gradient-based algorithms
restrict to apply derivative and partial derivative for some cases, while in other case
derivative-free algorithms are used but they have a slow speed of convergence. This paper
presents a capable deep learning to approximate the cost and constraints function for solving
convex optimization. The analysis phase and the first order partial derivative predicted from a
machine learning model so that the solution optimization can be calculated. A few examples

illustrate to evaluate the performance of the model.
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1. Introduction

Optimization problems are an important part of the design process [3]. We easy to solve the
simple problems with linear constraint and objective functions. However, in the case of
nonlinear constraint or objective functions, it has a few difficulties to obtain a global solution.
In recent years, two groups of optimal algorithms became the most popular that were

evolutionary and gradient-based algorithms.

By using evolutionary algorithms, the gradient information of function is not needed and
typically makes use of a set of design points. The advantages of these methods are extremely
robust, find near global optimum, easy to implement and suite for discrete optimization
problems. The big drawbacks associated with these algorithms are the issue of computational
expensive, poor constraint-handling abilities, problem-specific parameter tuning, and limited

problem size [1].

On the contrary case, gradient-based optimization techniques make use of gradient

information to find the optimum solution. In addition to solving problems with a large



number of design variables and the low number of function evaluations, they typically require
little problem-specific parameter tuning. They have difficulty solving discrete optimization
problems and only locate a local optimum [1]. If the objective and constraints that are not
known explicitly have a small number of function evaluations, the above global optimization

techniques are not applicable to found the global optimum.

Recently, machine learning (ML) has been applied in various fields, especially the deep
learning (DL), such as automatic drive, image recognition, natural language processing,
computer visions, healthcare, and financial sector [2], [3], [4], [5] . In computational physics
and engineering problems, deep learning has also been applied. Liang Liang et al. [6] use DL
to estimate the stress distribution of the human thoracic aorta. Zhou et al. [7] use DL to select
cutting tools for special-shaped machining features of complex products. Cha et al. [8] use
DL to detect cracks on concrete images. Oishi etal.[9] utilize DL optimizes
the numerical quadrature rule for the FEM element stiffness matrix in the element-by-element
basis. Zhang et al. [10] use the deep convolutional neural network (CNN) to solve the
topology optimization problem. The use of deep learning can be effective to circumvent the

expensive computation in optimization problems.

In this study, we use DL to approximate objective and constraints function into other
functions. The value and derivative of the new function which predicted from the trained
model are applied to resolve convex optimization problems. The remaining of the paper is
organized as follows. Section 2 describes some preliminaries about the deep neural network
(DNN). In section 3, the capability of DL approximate function and their derivatives give
details. Section 4 provides several numerical examples to show the computational efficiency.

Finally, section 5 concludes the paper.
2. Deep learning

Deep learning is a subfield of machine learning in artificial intelligence (Al) that is based on
learning several levels of representations, corresponding to a hierarchy of features or factors
or concepts, where higher-level concepts are defined from lower-level ones, and the same
lowerlevel concepts can help to define many higher-level concepts [11]. The relationship

between DL and associated fields are shown in Figure 1 [12].



Artificial intelligence

Machine learning

Deep learning

Figure 1. Venn diagram of the components of artificial intelligence
Machine learning is a set of mathematical relationships between the inputs and outputs,
whether it be a linear or non-linear relationship of a given data. The model parameters

estimated from the learning process such that the model can perform the specified task [12].

In figure 2, we consider a basic structure of the multi-layer feedforward neural network with

the full-connected layer, which consists of the input layer, the output layer, and the second

hidden layer.
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Figure 2. Typical feedforward neural network composed of four layers

In a layered neural network, the neurons are organized in the form of layers. The first layer is
called the input layer, the last layer is called the output layer, and the layers between are
hidden layers. Each neuron in a particular layer is connected with all neurons in the next
layer. the number of neurons in the hidden layer is usually determined through the trial and
error procedure. The non-linear function can approximate with any precision desired when

the feedforward neural network has more than three layers [9].



The block diagram of an artificial neuron is depicted in figure 3 [12]. The connection between

the ith and jth neuron is characterized by the weights wji and the jth neuron by the bias b? ,

which reflects the degree of importance of the given connection in the neural network (NN).

The output value of the jth neuron is determined by Egs. (1) [9]:
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Figure 3. Block diagram of artificial neuron

where X' is the output of the ith neuron in the (p-1)th layer, Wjﬁ"1 is weight to connect
between the ith neuron in the (p-7)th layer and the jth neuron in the pth layer, b? is the bias
of the jth neuron in the pth layer, Z? is the input value of the activation function at the jth
neuron of the pth layer, XJP is the output value of the activation function at the jth neuron of

the pth layer, fis the activation function, np.; is the number of neurons in the (p-1)th layer.

In supervised learning, training a NN is the process of adjusting values for the weights and
biases of the network to perform the desired function correctly. The error back-propagation is
usually adapted to minimize the sum of the squared differences between the computed and

correct output values E [5]:
1 .2
E= : (yJ - yj) (2)

where yj is the computed output value of the jth neuron in the output layer, y ; is the required

output value of the jth neuron in the output layer, nn is the number neuron of the output layer.

Egs. (2) is known as the loss function.



In the back-propagation algorithm, the steepest-descent minimization method is used. The

new weights and biases are adjusted for the next iteration of the network trains [12]:
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Where 1 is the learning coefficient (n € (0,1)), nk is the number of training pairs in training

set, a is the momentum factor (a € (0,1)). They are multiplied to the weights and biases

adjustment which are proportional to the amount of the previous weights and biases change.
So, selecting the appropriate values for the learning coefficient and the momentum factor will
help to improve the training speed, accuracy takes into the ability of the training process [13].

Several research has been proposed to adaptive this parameter [13].

When the error defined in Eqgs.(2) gradually decreases epoch by epoch [9], and the model
learns fit the training data too well but has poor fit with new datasets, which is called
overfitting. It is also shown that the machine learning model will lose generalization

capability to any data from the problem domain. Otherwise, if the error back-propagation is



large and the algorithm does not fit the data well enough, it may occur underfitting. The
problems of overfitting and underfitting are depicted in Figure 4 when the model learning
approximate a nonlinear function. To limit the overfitting or underfitting, we have a few of
the most popular solutions as follows: validation, cross-validation, train with more data,

remove features, early stopping, regularization, dropout and so on.
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Figure 4. Underfitting and overfitting
A DNN is an artificial NN with multiple hidden layers (more than three hidden layers [14])
between the input and output layers [11], which can gain better complex non-linear
relationships. However, increasing network depth is hard to train because of the vanishing
gradient problem. Repeat multiplication may make the gradient extremely small, which is
back-propagation to previous layers. Since the weights and biases in Eq. (3, 4) are not be
adjusted, the model gets saturated or even starts degrading rapidly. To circumvent this
difficulty, the concept of skip connection first introduced by He et al [15]. As show in Figure
5, they allow a short path for gradient to flow through and the higher layer will perform at

least as good as the lower layer.
3. Approximate of function and their derivatives by DNN

We first need to prepare datasets for training and testing with various conditions to gaurantee

the generality model and avoid overfitting. A input — output relationship is considered: the

Cc
n

vector X = {Xf, X5, -0 X } as the input and the vector y = {y1°, Y5, ...,y;} as the output,

where c is the cth data pairs of a large set of data pairs [9]. They must be normalized so that
the value belong to the set of all numbers between 0 and 1. Normalization schemes for the

vectors critically affect the performance and training of the NN [16], [12], [17], [13].

Secondly, The DL model is built with the hidden layers, neurons, activation function (AF),
optimization algorithm and other parameters. We consider the DNN showed in Figure 6,

which is used to training for approximating function.
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Figure 5. Skip connection
where x is the input vector, y is the output vector, wP is the connection weigth between the

pth layer and (p-1)th layer, bP is the bias of the pth layer, p is the number hidden layer (p>3).
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Figure 6. Deep neural network
AF is employed in neurons of the hidden and output layer to compute the weighted sum of

input and biases [12]. We need to apply AF to the NN, which can be learn something
complex and represent a nonlinear arbitrary functional mapping between inputs and outputs.
Most popular types of AF shown in Table 1. Rectified linear units (ReLU) was proposed
introduction by Nair and Hinton 2010, which has strong biological and mathematical
underpinnings. It offers better performance and generalization in deep learning compared to
the other AF [12], [14]. The main advantages of using ReLLU are faster learning, improve the
convergence and eliminate the vanishing gradient problem. Almost all DL models, ReLU
often uses in the hidden layers and combine the dropout technique to reduce the overfitting

[10], [6], [8], [3], [4], [14]. The softmax function is another types of AF used to compute



probability distribution from a vector of real numbers. It is used in the output layer of most

common practice DL applications [8], [3], [4], [14].

Table 1. Activation functions

No. Function Equation Derivative
x. for x>0 1 forx >0
f(x)=1" ' f'(x)= '
I RelU ) {O forx, <0 () {O forx, <0
£(x) x, forx >0 £(x) 1 for x,>0
X)= =
2 LeakyRelU ax, forx, <0 a forx <0
fx)=—" foriz1..k
3 Softmax v Zk:exk I f'(x) = f(x)(1-f(x))
i=1
1
> forx=0
X (1+x)
4  Softsign f(xX)=— f'(x)=
14X 1T
> forx<0
(1-x)
5  Softplus f(x)=In(1+e) f'(x)= 1+L—x
1 '
6  Sigmoid f(x)= — f'(x) = f(x)(1-f(x))
1+e
X -X ' _ _ 2
7  Tanh f(x)= ex _efx i) =0-1(x))
e‘+e

Shiyu et al. [18] indicated the relationship between the number of hidden layers, neurons and
approximation error. Shallow networks require exponentially more neurons than a deep
network to achieve the level of accuracy for function approximation. However, we have been
at least as difficult to determine exactly the number of hidden layers, neurons, and parameters
for the problem under consideration.
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Figure 7. Various number of hidden layer



X, X .

1105 —sin(X, + X, ) (X, +X,)
with two input variables using standard DL with 1, 2 or 3 hidden layers, the total number of
neurons in the hidden layers 18, 36, 126 and 258. In Figure 7, it is shown that increasing

suitable the number of hidden layers will decrease mean squared error (MSE) of the testing.

We approximate a trigonometric polynomial f(X)=cos(x,x,)—

As the next step, we will use our data to perform the training process where the values in
weigths and biases are adjusted to improve the predictability of the model. After once
training is complete, we need evaluation of our model against data that has never been used
training. It allows us to see how the model might predict the dataset that it has not yet seen.

Constrained optimization problem may be written as follows:
min Y, (x) )]

y;i(x)=0 i=1...n
subject to . a0
y;(x)<0  j=(n+1),....m

where yo is the objective function, yi, y2, ..., ym are the constraint functions, x €RY is the
vector of d design variables and m is the equality and inequality constraints.

A DL model that contains the input variables and the output in the objective and constraint
functions, is built to approximate the problem. The value of functions are predicted by the
trained model according to [1]

¥o(x)=f(ZP) 0=0,1...,m (11)

ZY = wi(@Z' ") +b, k=1..(p+1)
i=1

f(z<°>) - x

(12)

and the corresponding first order derivatives are given by Eq. (13)
avo(x) _ N [ 20) i
T_[Hf (z )w | (13)

where Y, is the value of function approximation, f is the activation function, p is the number
of the hidden layers, ng) is the output vector of all neurons in the kth layer, j is the number

of neurons in the layer, W:Jf is the weights between the kth layer and (k-1)th layer, b; is the

bias vector, m is the number of hidden neurons in the kth layer, and Ixq) is the identity
matrix.

Therefore, the optimization problem would be solved on the approximate model according to



min Y, (X) (14)

Y; (X) =0 i=1...,n
subject to as)
yJ(X)SO ji=(n+1),....m
The Lagrangian for the problem using Eqs. (14) to (15) is given as
L(X,A) =Y, (x)+ > LY, 16)

Therefore, the following optimization problem could be solved with Kuhn-Tucker as follows:

L _Ho 39 V1104
i=1 X,

ox; Ox; o i

y, =0 i=1to n (17)
Ay, =0 i=(n+1)tom

A 20 i=(n+1)to m

4. Numerical results

In order to demonstrate the performance of deep learning, benchmark and real-world
engineering constrained optimization problems will be presented and compared the predicted
and optimal values. The dataset is generated according to the domain of the variables [17].
The network includes an input layer, an output layer, and three hidden layers. ReLU was used
in each hidden layer, and the output layer of the generator uses the Softmax function. The
skip connection is applied in the last hidden layer. The ADAM (adaptive moment estimation)
optimization algorithm is used to optimize the weights and biases to minimize the loss
function which measured by the MSE. The learning rate was defined as 0.001, momentum as
0.9, the number of epochs as 100, and batch size as 32. The Quasi_Newton method is used to

optimize with the value and derivative of functions that are predicted by DL model.
4.1. Constrained benchmark problems.

In this section, DL is performed on the 5 well-known benchmark constrained functions taken
from [17], [19] (see Appendix A). The parameters of neural architecture presented in Table 2.
The neural network will stop training when the error remains constant. The result obtained is
excellent with the maximum error of 0.43% and the minimum error of 0.0004% of the

objective function value in Table 3. We can see which optimal results on the approximation



function are quite close to the original function. Therefore, the DL model is a good

approximation for the objective and constraints function. As shown in Figure 8, the shape of

the objective function is the same approximation function.

Table 2. Network architecture

Data pairs Neurons in the Time Error

Fun Training Testing layers training(s) MSE
Al 2000 200 2-32-32-3 21 2.04E-6
A2 2500 250 2-48-48-3 24 2.72E-6
A3 3200 320 3-64-64-3 35 4.07E-6
A4 3500 350 3-64-64-4 41 4.82E-6
AS 2500 200 2-32-32-3 24 7.82E-6

Table 3. The optimal result for constrained benchmarks

Fun. Optimal Quasi_Newton Present Error (%)

Al -7.2 -7.199 -7.231 0.43

A2 -225 -224.999 -224.773 0.0004

A3 -40/9 -4.444 -4.449 0.001

A4 1 0.999 1.0002 0.01

A5 -0.998673 -0.998 -0.995 0.36

Orginal surface

Prediction surface

Figure 8. Objective function approximation



4.2 Engineering design problems.

In this example, we must minimize the weight and subject to the stress of the following three-
bar truss problem (see Appendix B). The model uses 8000 data pairs to training and 800 data
pairs to test, 128 neurons in the hidden layers. The training accuracy obtained 99%, and MSE
2.58E-7. The comparison of the solution obtained from DL, Quasi Newton, backtracking
search (BSA), hybrid particle swarm optimization and differential evolution, a hybrid
evolutionary algorithm is shown in Table 4. Figure 9 shows the weight convergence histories
obtained by the approximation function from DL, Quasi_Newton for this structure. Again,
the DL model shows its effectiveness to solve the optimization problem based on the

approximation function.

Table 4. Comparison of solution for three-bar truss design problem

Method HEAA PSO-DE BSA Quasi_Newton Present

X1 0.78868 0.788675 0.788675 0.788693 0.785695
X2 0.408234 0.408248 0.408248 0.408196 0.404468
g1(x) NA -5.29E-11 -3.23E-12 2.56E-6 8.84E-5
22(x) NA -1.463748 -1.464102 -1.463891 -1.469825
23(x) NA -0.536252 -0.535898 -0.536105 -0.528274
f(x) 263.895843  263.895843  263.895843  263.895838 263.582674
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Figure 9. The weight convergence histories of three-bar truss obtained using the DL,

Quasi_Newton



5. Conclusions

In this paper, we have successfully implemented optimization with the value and derivative
of the function by the DL model. Six numerical examples with convex properties to verify the
effectiveness of the proposed approach. It is shown that the method yield converges globally
to a unique optimal solution of problems.

Appendix
A. Constrained benchmark problems
A.1. Constrained problem 01 [19]

min f(x) =x +2x3 - 2x,x, — 2X, — 6X,
subjectto: g,(x)=x,+x,-2<0
9,(X)=-Xx, +2x,-2<0

x, 20 i=12
A.2. Constrained problem 02 [19]
min f(x) = x? + 2x2 + x,x, — 30x, — 30x,
subjectto: g,(x)= %x1 —X, —% <0
gz(x):%x1 +X, —% <0
X, 2-5, x,<5
A.3. Constrained problem 03 [19]
min f(x) = X3 +2x3 +0.5%2 + X, X, + X, X5 —4X, —3X, — 2X,

subjectto: g,
9,

(X) =X, +%X, +2x, -3<0
(

X)=3X, —9%, +9x, =1

o

<X, < i i=1..3
3

A 4. Constrained problem 04 [19]

min f(X) = 10X% +2x2 +2x2 —2* (X, X, + 3* X, X5 — X,X;)
-1<-X,+x%, <0
subjectto: -1<x,-3x, <1

1<%, +%X, £2

0<x <3 il4s
3



A.5. Constrained problem 05 [17]

X, X
min f(x) = —cos(x,Xx, )+ -2
(x) (X:X;) 100

+sin(x1 +x2)(x1 + x2)

subjectto: g,(x)=-x,+x,+0.5<0
9,(xX)=x,x,-15<0

0<x, <15 -1<x, <1

B Three-Bar Truss Design Problem [20]

min f(x) = (242X, + X, )¢
P(\/Ex1 +x2)
subjectto: g,(X)= ——+-0<0
V2x2 +2x,x,
Px
0,(X)= =52 —-5<0
V2x2 +2x X,
P <0

X)=— —
9;(x) ox, i x.
0<x <1 i=12
¢=100cm, P=2kN, o=2kN/cm?

where X1, X, are the cross-sectional areas of the bars, ¢ is the maximum permissible stress in tension, P is force
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