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Abstract:  Optimization problems in engineering often find the minimum or maximum value 

of the objective function under a prescribed set of constraints. Gradient-based algorithms 

restrict to apply derivative and partial derivative for some cases, while in other case 

derivative-free algorithms are used but they have a slow speed of convergence. This paper 

presents a capable deep learning to approximate the cost and constraints function for solving 

convex optimization. The analysis phase and the first order partial derivative predicted from a 

machine learning model so that the solution optimization can be calculated. A few examples 

illustrate to evaluate the performance of the model. 
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1. Introduction 

Optimization problems are an important part of the design process [3]. We easy to solve the 

simple problems with linear constraint and objective functions. However, in the case of 

nonlinear constraint or objective functions, it has a few difficulties to obtain a global solution. 

In recent years, two groups of optimal algorithms became the most popular that were 

evolutionary and gradient-based algorithms.  

By using evolutionary algorithms, the gradient information of function is not needed and 

typically makes use of a set of design points. The advantages of these methods are extremely 

robust, find near global optimum, easy to implement and suite for discrete optimization 

problems. The big drawbacks associated with these algorithms are the issue of computational 

expensive, poor constraint-handling abilities, problem-specific parameter tuning, and limited 

problem size [1].  

On the contrary case, gradient-based optimization techniques make use of gradient 

information to find the optimum solution. In addition to solving problems with a large 



number of design variables and the low number of function evaluations, they typically require 

little problem-specific parameter tuning. They have difficulty solving discrete optimization 

problems and only locate a local optimum [1]. If the objective and constraints that are not 

known explicitly have a small number of function evaluations,  the above global optimization 

techniques are not applicable to found the global optimum. 

Recently, machine learning (ML) has been applied in various fields, especially the deep 

learning (DL), such as automatic drive, image recognition, natural language processing, 

computer visions, healthcare, and financial sector [2], [3], [4], [5] . In computational physics 

and engineering problems, deep learning has also been applied. Liang Liang et al. [6] use DL 

to estimate the stress distribution of the human thoracic aorta. Zhou et al. [7] use DL to select 

cutting tools for special-shaped machining features of complex products. Cha et al. [8] use 

DL to detect cracks on concrete images. Oishi et al. [9]  utilize DL optimizes 

the numerical quadrature rule for the FEM element stiffness matrix in the element-by-element 

basis. Zhang et al. [10] use the deep convolutional neural network (CNN) to solve the 

topology optimization problem. The use of deep learning can be effective to circumvent the 

expensive computation in optimization problems. 

In this study, we use DL to approximate objective and constraints function into other 

functions. The value and derivative of the new function which predicted from the trained 

model are applied to resolve convex optimization problems. The remaining of the paper is 

organized as follows.  Section 2 describes some preliminaries about the deep neural network 

(DNN). In section 3, the capability of DL approximate function and their derivatives give 

details. Section 4 provides several numerical examples to show the computational efficiency. 

Finally, section 5 concludes the paper. 

2. Deep learning 

Deep learning is a subfield of machine learning in artificial intelligence (AI) that is based on 

learning several levels of representations, corresponding to a hierarchy of features or factors 

or concepts, where higher-level concepts are defined from lower-level ones, and the same 

lowerlevel concepts can help to define many higher-level concepts [11].  The relationship 

between DL and associated fields are shown in Figure 1 [12].  
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Figure 1. Venn diagram of the components of artificial intelligence 

Machine learning is a set of mathematical relationships between the inputs and outputs, 

whether it be a linear or non-linear relationship of a given data. The model parameters 

estimated from the learning process such that the model can perform the specified task [12].   

In figure 2, we consider a basic structure of the  multi-layer feedforward neural network with 

the full-connected layer, which consists of the input layer, the output layer, and the second 

hidden layer. 

Figure 2. Typical feedforward neural network composed of four layers 

In a layered neural network, the neurons are organized in the form of layers. The first layer is 

called the input layer, the last layer is called the output layer, and the layers between are 

hidden layers. Each neuron in a particular layer is connected with all neurons in the next 

layer. the number of neurons in the hidden layer is usually determined through the trial and 

error procedure. The non-linear function can approximate with any precision desired when 

the feedforward neural network has more than three layers [9].  

Input layer 1rst Hidden layer 2nd Hidden layer output layer 

Input data Output data 



 
f  

 

The block diagram of an artificial neuron is depicted in figure 3 [12]. The connection between 

the ith and jth neuron is characterized by the weights wji and the jth neuron by the bias p
jb , 

which reflects the degree of importance of the given connection in the neural network (NN). 

The output value of the jth neuron is determined by Eqs. (1) [9]:  
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Figure 3. Block diagram of artificial neuron 

where p 1
ix   is the output of the ith neuron in the (p-1)th layer,  p 1

jiw   is weight to connect 

between the ith neuron in the (p-1)th layer and the jth neuron  in the pth layer, p
jb  is the bias 

of the jth neuron in the pth layer, p
jz is the input value of the activation function at the jth 

neuron of the pth layer, p
jx  is the output value of the activation function at the jth neuron of 

the pth layer, f is the activation function, np-1 is the number of neurons in the (p-1)th layer. 

In supervised learning, training a NN is the process of adjusting values for the weights and 

biases of the network to perform the desired function correctly. The error back-propagation is 

usually adapted to minimize the sum of the squared differences between the computed and 

correct output values E [5]: 
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where yj is the computed output value of the jth neuron in the output layer, jŷ  is the required 

output value of the jth neuron in the output layer, nN is the number neuron of the output layer. 

Eqs. (2) is known as the loss function. 



In the back-propagation algorithm, the steepest-descent minimization method is used. The 

new weights and biases are adjusted for the next iteration of the network trains [12]:  
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Where  is the learning coefficient   0,1 , nk is the number of training pairs in training 

set, α is the momentum factor   0,1 . They are multiplied to the weights and biases 

adjustment which are proportional to the amount of the previous weights and biases change. 

So, selecting the appropriate values for the learning coefficient and the momentum factor will 

help to improve the training speed, accuracy takes into the ability of the training process [13]. 

Several research has been proposed to adaptive this parameter [13].  

When the error defined in Eqs.(2) gradually decreases epoch by epoch [9], and the model 

learns fit the training data too well but has poor fit with new datasets,  which is called 

overfitting. It is also shown that the machine learning model will lose generalization 

capability to any data from the problem domain. Otherwise, if the error back-propagation is 



large and the algorithm does not fit the data well enough, it may occur underfitting. The 

problems of overfitting and underfitting are depicted in Figure 4 when the model learning 

approximate a nonlinear function.  To limit the overfitting or underfitting, we have a few of 

the most popular solutions as follows: validation, cross-validation, train with more data, 

remove features, early stopping, regularization, dropout and so on.   

Figure 4. Underfitting and overfitting 

A DNN is an artificial NN with multiple hidden layers (more than three hidden layers [14]) 

between the input and output layers [11], which can gain better complex non-linear 

relationships. However, increasing network depth is hard to train because of the vanishing 

gradient problem. Repeat multiplication may make the gradient extremely small, which is 

back-propagation to previous layers. Since the weights and biases in Eq. (3, 4) are not be 

adjusted, the model gets saturated or even starts degrading rapidly. To circumvent this 

difficulty, the concept of skip connection first introduced by He et al [15]. As show in Figure 

5, they allow a short path for gradient to flow through and the higher layer will perform at 

least as good as the lower layer. 

3. Approximate of function and their derivatives by DNN 

We first need to prepare datasets for training and testing with various conditions to gaurantee 

the generality model and avoid overfitting. A input – output relationship is considered: the 

vector  c c c
1 2 nx , x , ...,xx  as the input and the vector  c c c

1 2 my , y , ...,yy  as the output, 

where c is the cth data pairs of a large set of data pairs [9]. They must be normalized so that 

the value belong to the set of all numbers between 0 and 1. Normalization schemes for the 

vectors critically affect the performance and training of the NN [16], [12], [17], [13].   

Secondly, The DL model is built with the hidden layers, neurons, activation function (AF), 

optimization algorithm and other parameters. We consider the DNN showed in Figure 6, 

which is used to training for approximating function.  
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Figure 5. Skip connection 

where x is the input vector, y is the output vector, wp is the connection weigth between the 

pth layer and (p-1)th layer, bp is the bias of the pth layer, p is the number hidden layer (p≥3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Deep neural network 
AF is employed in neurons of the hidden and output layer to compute the weighted sum of 

input and biases [12]. We need to apply AF to the NN, which can be learn something 

complex and represent a nonlinear arbitrary functional mapping between inputs and outputs. 

Most popular types of AF shown in Table 1. Rectified linear units (ReLU) was proposed 

introduction by Nair and Hinton 2010, which has strong biological and mathematical 

underpinnings. It offers better performance and generalization in deep learning compared to 

the other AF [12], [14]. The main advantages of using ReLU are faster learning, improve the 

convergence and eliminate the vanishing gradient problem. Almost all DL models, ReLU 

often uses in the hidden layers and combine the dropout technique to reduce the overfitting 

[10], [6], [8], [3], [4], [14].   The softmax function is another types of AF used to compute 



probability distribution from a vector of real numbers. It is used in the output layer of most 

common practice DL applications [8], [3], [4], [14]. 

Table 1. Activation functions 

No. Function Equation Derivative 
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Shiyu et al. [18] indicated the relationship between the number of hidden layers, neurons and 

approximation error. Shallow networks require exponentially more neurons than a deep 

network to achieve the level of accuracy for function approximation. However, we have been 

at least as difficult to determine exactly the number of hidden layers, neurons, and parameters 

for the problem under consideration.  

 
Figure 7. Various number of hidden layer 
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We approximate a trigonometric polynomial   1 2
1 2 1 2 1 2

x x
f( ) cos(x x ) sin x x x x

100
    x  

with two input variables using standard DL with 1, 2 or 3 hidden layers, the total number of 

neurons in the hidden layers 18, 36, 126 and 258. In Figure 7, it is shown that increasing 

suitable the number of hidden layers will decrease mean squared error (MSE) of the testing.  

As the next step, we will use our data to perform the training process where the values in 

weigths and biases are adjusted to improve the predictability of the model. After once 

training is complete, we need evaluation of our model against data that has never been used 

training. It allows us to see how the model might predict the dataset that it has not yet seen.  

Constrained optimization problem may be written as follows: 

   min     0y x         (9) 
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where y0 is the objective function, y1, y2, …, ym are the constraint functions, x Rd is the 

vector of d design variables and m is the equality and inequality constraints.  

A DL model that contains the input variables and the output in the objective and constraint 

functions, is built to approximate the problem. The value of functions  are predicted by the 

trained model according to [1]   
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and  the corresponding first order derivatives are given by Eq. (13) 
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where oy is the value of function approximation, f is the activation function, p is the number 

of the hidden layers,  k

jZ  is the output vector  of all neurons in the kth layer, j is the number 

of neurons in the layer, k
ijw   is the weights between the kth layer and (k-1)th layer, jb  is the 

bias vector, m is the number of hidden neurons in the kth layer, and I(dxd) is the identity 

matrix.  

Therefore, the optimization problem would be solved on the approximate model according to 
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The Lagrangian for the problem using Eqs. (14) to (15) is given as 

 
m

0 i i
i 1

L(x, ) y y


   x               (16) 

Therefore, the following optimization problem could be solved with Kuhn-Tucker as follows: 
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4. Numerical results 

In order to demonstrate the performance of deep learning, benchmark and real-world 

engineering constrained optimization problems will be presented and compared the predicted 

and optimal values. The dataset is generated according to the domain of the variables [17].  

The network includes an input layer, an output layer, and three hidden layers. ReLU was used 

in each hidden layer, and the output layer of the generator uses the Softmax function. The 

skip connection is applied in the last hidden layer. The ADAM (adaptive moment estimation) 

optimization algorithm is used to optimize the weights and biases to minimize the loss 

function which measured by the MSE. The learning rate was defined as 0.001,  momentum as 

0.9, the number of epochs as 100, and batch size as 32. The Quasi_Newton method is used to 

optimize with the value and derivative of functions that are predicted by DL model. 

4.1. Constrained  benchmark problems. 

In this section, DL is performed on the 5 well-known benchmark constrained functions taken 

from [17], [19] (see Appendix A). The parameters of neural architecture presented in Table 2.  

The neural network will stop training when the error remains constant. The result obtained is 

excellent with the maximum error of 0.43% and the minimum error of 0.0004% of the 

objective function value in Table 3. We can see which optimal results on the approximation 



function are quite close to the original function. Therefore, the DL model is a good 

approximation for the objective and constraints function. As shown in Figure 8, the shape of 

the objective function is the same approximation function. 

Table 2. Network architecture 

Fun. 
Data pairs Neurons in the 

layers 

Time 

training(s) 

Error 

MSE Training Testing 

A.1 2000 200 2-32-32-3 21 2.04E-6 

A.2 2500 250 2-48-48-3 24 2.72E-6 

A.3 3200 320 3-64-64-3 35 4.07E-6 

A.4 3500 350 3-64-64-4 41 4.82E-6 

A.5 2500 200 2-32-32-3 24 7.82E-6 

 

Table 3. The optimal result for constrained benchmarks 

Fun. Optimal Quasi_Newton Present  Error (%) 

A.1 -7.2 -7.199 -7.231 0.43 

A.2 -225 -224.999 -224.773 0.0004 

A.3 -40/9 -4.444 -4.449 0.001 

A.4 1 0.999 1.0002 0.01 

A.5 -0.998673 -0.998 -0.995 0.36 

 

  

Figure 8. Objective  function approximation 

 



4.2.Engineering design problems. 

In this example, we must minimize the weight and subject to the stress of the following three-

bar truss problem (see Appendix B). The model uses 8000 data pairs to training and 800 data 

pairs to test, 128 neurons in the hidden layers. The training accuracy obtained 99%, and MSE  

2.58E-7. The comparison of the solution obtained from DL, Quasi_Newton, backtracking 

search (BSA), hybrid particle swarm optimization and differential evolution, a hybrid 

evolutionary algorithm is shown in Table 4. Figure 9 shows the weight convergence histories 

obtained by the approximation function from DL, Quasi_Newton for this structure. Again, 

the DL model shows its effectiveness to solve the optimization problem based on the 

approximation function.  

Table 4. Comparison of solution for three-bar truss design problem 

Method HEAA PSO-DE BSA Quasi_Newton Present 

x1 0.78868 0.788675 0.788675 0.788693 0.785695 

x2 0.408234 0.408248 0.408248 0.408196 0.404468 

g1(x) NA -5.29E-11 -3.23E-12 2.56E-6 8.84E-5 

g2(x) NA -1.463748 -1.464102 -1.463891 -1.469825 

g3(x) NA -0.536252 -0.535898 -0.536105 -0.528274 

f(x) 263.895843 263.895843 263.895843 263.895838 263.582674 

 
Figure 9. The weight convergence histories of three-bar truss obtained using the DL, 
Quasi_Newton 
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5. Conclusions 

In this paper, we have successfully implemented optimization with the value and derivative 

of the function by the DL model. Six numerical examples with convex properties to verify the 

effectiveness of the proposed approach. It is shown that the method yield converges globally 

to a unique optimal solution of problems.  

Appendix 

A. Constrained benchmark problems 

A.1. Constrained problem 01 [19] 
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A.2. Constrained problem 02 [19] 
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A.3. Constrained problem 03 [19] 

2 2 2
1 2 3 1 2 1 3 1 2 3

1 1 2 3

2 1 2 3

i

min f(x) x 2x 0.5x x x x x 4x 3x 2x

subject to : g (x) x x 2x 3 0

g (x) 3x 9x 9x 1

4
0 x , i 1,...,3

3

       

    

   

  

 

A.4. Constrained problem 04 [19] 
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A.5. Constrained problem 05 [17] 
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B Three-Bar Truss Design Problem [20] 
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where x1, x2 are the cross-sectional areas of the bars,  is the maximum permissible stress in tension, P is force  
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