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Abstract

In this paper, an efficient Force Neural Network (FNN) is developed to reformulate the
size optimization of truss structures as an operator learning problem. A Deep Neural Net-
work (DNN) is designed to directly map the connectivity information of truss members to
the corresponding design variables. Therein, the entire unlabeled training data contains only
the connectivity information of members, without any structural responses, weights, or cross-
sectional areas. By integrating Force Method (FM), our framework embeds the optimal design
problem represented by the objective and constraint functions in the loss function to guide the
training process. And it guarantees that the generated solution is consistent with the underlying
physical principles. In addition to enhance efficiency in finding the optimum structural weight,
Bayesian Optimization (BO) is applied for automatic hyper-parameters tuning instead of the
trial and error method. As soon as the training phase ends, the optimal weight of truss struc-
tures is found without using any other numerical methods. Several numerical examples are
investigated to demonstrate the effectiveness and applicability of the FNN for the optimization
of truss structures. The obtained results indicate that it not only be simple to perform but also
overcomes the local optimal problem and reduces the computational cost in high-dimensional

problems.
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1. Introduction

In the past decades, the optimization of truss structures has received widespread attention
from many scholars [1} 2]]. Generally, most current work relies on the same fundamental princi-
ple, as illustrated in Fig. . Therein, numerical simulations are performed in each iteration of
the optimization algorithm to estimate the structural responses. And these optimization algo-
rithms can be grouped into three primary categories: Optimality Criteria (OC), gradient-based,
and gradient-free algorithms. Firstly, the OC method employs heuristic updates based on op-
timality conditions for searching the optimal solution. And it has been successfully applied to
handle optimization problems. For instance, Khot and Berke [3] introduced an efficient algo-
rithm based on the OC for the sizing of structures. Besides, Bendsge et al. [4] developed a dis-
placements based OC method for truss topology design. Saka [S] applied the OC to design the
shape of roof trusses. Although using the OC method had many benefits, the obtained results
were sensitive to the initial starting point and the chosen parameters. Furthermore, it encoun-
tered the challenges in handling multiple constraints and local minima [6]. Next, the second
baseline method is a gradient-based algorithm that relies on derivative information to guide
the search process. For example, Gu et al. [[7] developed a displacement-based optimization
method to find the minimum weight of truss structures. A gradient-Hessian matrix-based algo-
rithm was presented by Liu et al. [8]] for minimizing the weight of truss structures. Addition-
ally, Schmit and Farshi [9] suggested a succession of linear programs for sizing optimization
of structures. To reduce computational costs, Saka and Ulker [[10] developed a coupling mech-
anism based on nonlinear analysis technique and optimality criterion. Despite its remarkable
success in the structural optimization, this approach still has limitations related to local optima
and the lack of gradient information [11]. To circumvent the above drawbacks, gradient-free
algorithms have received much attention for their ability to find near-optimal solutions. Storn
and Price [12] firstly introduced a Differential Evolution (DE) algorithm for minimizing pos-
sibly nonlinear and non-differentiable continuous space functions. A genetic algorithm based
on principles of biological evolution for solving optimization problems was suggested by Hol-
land [13]]. More recently, Lieu et al. [[14] proposed a firefly algorithm for the optimization of

truss structures. In addition, Rao et al. [15] presented teaching-learning-based optimization for
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solving mechanical design problems, while particle swarm optimization optimizing nonlinear
functions was released by Kennedy and Eberhart [[16]. Up to now, a variety of metaheuristic
algorithms have been successfully developed for optimization [[17-24]]. However, these algo-
rithms require a large number of structural analyses, become computationally challenging for
large-scale problems, and have relatively slow convergence speeds [25]].

In recent years, Machine Learning (ML) has been proven to be successful in a range of
applications thanks to its ability to tackle complex problems lacking closed-form expressions.
And the field of computational mechanics is no exception [26H35]]. To the best of our knowl-
edge, the applications of ML to structural optimization problems can be grouped into two main
categories. The first one is a data-driven approach where the ML models are trained using pre-
existing data to predict structural responses, optimize designs, or approximate solutions without
relying on traditional physics-based simulations. Fig. provides a comprehensive overview
of the purely data-driven framework. Indeed, this methodology is not a new one and has been
introduced since the 1990s. Specifically, Hajela and Berke [36] were among the pioneers in
using Neural Networks (NNs) to replace structural analysis steps in the optimization process.
And then a nonlinear neural dynamics model for optimization of structures was released by
Adeli and Park [37]. Additionally, Ramasamy and Rajasekaran [38]] introduced a combination
between the genetic algorithm and NN for the design of industrial roofs. Recently, to reduce
computational costs, Mai et al. [39] developed an integrated model combining the NN and DE
for the design optimization of geometrically nonlinear structures. Besides, Li et al. [40] pro-
posed a non-iterative topology optimizer using ML for heat conduction structure design. The
same idea was adopted by White [41] and Chi [42] to replace the finite element analysis for the
topology optimization. Although it has achieved certain success in optimization applications

[43-45], this strategy also faces several challenges as follows:

(1) The data-driven model is derived from the input-output relationship without relying on
precise physical assumptions. Therefore, it requires a larger number of training data
to achieve the desired accuracy. Furthermore, computational simulations, such as finite
element analysis, are used to collect the available true data. Precisely for this reason, it

poses a significant challenge in determining the quality and size of the training data [46].
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(i1) In other words, the NN was trained to minimize the distinction between the provided data

and predicted results as a loss function. And the physical laws and governing equations

of structures were not directly considered in the training process. As a result, the model

fails to ensure the physical laws and lacks the generality needed for addressing various

optimization problems [47].

(iii)

Moreover, an important aspect to highlight here is the choice of hyper-parameters. Many

studies have emphasized that the obtained results heavily depend on the selected net-

work architecture [46, 48]. Consequently, it often poses a challenge for tuning hyper-

parameters without relying on user experience whilst still ensuring accuracy.
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Fig. 1. Process of structural optimization. (a) Conventional approach including optimizer algo-
rithm and structural analysis. (b) Purely data-driven model combines the optimizer algorithm

and neural network.

In contrast, the second approach is Physics-Informed Neural Networks (PINNs), where

9 physical laws represented by Partial Differential Equations (PDEs) were embedded in the loss

o7 function to guide the learning process. It has been proven to be successful in structural analysis
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[49, 150 and solving PDEs [34,35]]. In recent literature, several scholars have successfully ap-
plied this approach for the structural optimization. Accordingly, He et al. [S1] and Jeong et al.
[52]] were among the first authors to develop a approach for integrating PINNs-based simulation
technique into classical topology optimization. In addition, two PINNSs are designed to indicate
optimized structures by Jeong et al. [S3]. In recent times, Singh [54] introduced a dual PINNs
for topology optimization. In the aforementioned studies, the networks are employed to replace
structural and sensitivity analyses, as shown in Fig. 2h. Despite their success, this strategy also
faces many challenges. First of all, instead of directly solving algebraic equations to estimate
the structural responses, the network was trained to solve the energy minimization problem,
and this inevitably leads to a large computational cost compared to classical approaches. On
the other hand, the training data changes in each iteration of the optimization process. This may
result in unstable numerical outcomes due to the changing potential energy landscape, while
the hyper-parameters of the network remain fixed. Furthermore, it leads to inefficiencies in op-
timization performance in terms of both accuracy and computational cost for the dual PINNs.
Motivated by this fact, our recent work proposes a Physics-Informed Neural Energy-Force Net-
work (PINEFN) to solve the design optimization of truss structures. In this approach, a single
neural network is utilized to minimize the loss function, which is derived from the weight,
complementary energy, and constraint equations to determine the optimal solution. Despite its
success in estimating the optimal weight, we observed that the training process converged only
when the complementary energy of the structure was always positive. In other cases, the model
did not converge to the optimal solution. And this can be interpreted as due to the complexity
of the loss function when the network was designed to perform optimization of both the com-
plementary energy and weight at the same time. According that core idea, the first term in the
loss function was the Euclidean norm of the complementary energy, while the second and third
terms related to the violated constraints and weight, respectively. It should be noted that the
values of these terms as well as the loss function were always positive in the whole training
process. Hence, the loss landscape becomes less smooth and converges to an unfavorable local
minimum [55/] when the minimum complementary energy of the structure is negative. Nev-

ertheless, in aforementioned works, the choice of hyper-parameters is still a challenging issue
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due to the complexity of the loss function.
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Fig. 2. Schematic diagram of structural optimization. (a) PINNs is used to replace FEM to ob-
tain the structural responses. (b) Integrating structural analysis into neural network framework.

Driven by the challenges mentioned above, this study aims to introduce the force neural net-
work framework for the size optimization of truss structures, as illustrated in Fig. [2b. Therein,
the DNN is designed to directly estimate the optimal weight design. The trainable parameters,
including the weights and biases of the network, are considered as design variables instead
of the cross-sectional areas of truss members. The unlabeled training data only contains the
connectivity matrix of truss elements. Meanwhile, the unknown cross-sectional areas are de-
rived as output values of the network, which are expressed by the trainable parameters and
the connectivity information. Based on the predicted cross-sectional areas, the weight and the
corresponding constraint functions found by supporting FM are embed in the loss function of
the network to guide the training process. Additionally, the BO framework is applied to auto-
matically tune hyper-parameters of the network. When the training process ends, the optimum
design is immediately indicated without using any additional algorithms. Several benchmarks

are investigated to evaluate the reliability and efficiency of the proposed model. The obtained
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results of numerical examples are compared against several well-known recently introduced
algorithms.

The main contributions of this study are as follows:

* Force neural network framework equipped with automatic sensitivity analysis capabil-
ities offers simplicity, ease of use, and robustness for solving the optimization of truss

structures under multiple constraints.

* Connectivity matrix of truss members is considered as a self-normalized and unlabeled
training data without including any structural responses. Hence, it can be easily col-
lected from the geometric information without using any numerical simulations or sam-
pling techniques. In addition, the self-normalized data ensures more stable and efficient

parameter updates during training.

* Automatic tuning of hyper-parameters using Bayesian optimization helps to escape the

local optima as well as enhances reliability in design optimization.

* Our approach yields high accuracy, converges faster, and saves computational cost in
high-dimensional problems compared to conventional optimization algorithms using fi-

nite element analysis.

The remainder of this study is organized as follows. In Section [2] a detailed introduction
to the force neural network framework is provided. Therein, Section [2.1| presents the training
data. While Section [2.2] provides the DNN architecture and loss function, Section [2.3] shows
auto-tuning hyper-parameters. In Section (3| several case studies are conducted to demonstrate
the accuracy and effectiveness of our model. Next, the efficiency of the proposed approach is

discussed in Section Ef} Finally, crucial conclusions are summarized in Section E] of the article.
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Fig. 3. Force neural network framework for design optimization.
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2. Force neural network framework

In this section, the FNN, as shown in Fig. [3| is first introduced to directly perform opti-
mization of truss structures. Therein, the trainable parameters of the network @ are treated as
new design variables instead of the cross-sectional areas. The entire training data contains only
the connectivity matrix C;, which is unlabeled, self-normalized, and without any structural re-
sponses. And each row of this matrix Cj (¢, :) represents a sample of the training data which is
known as an input vector to the neural network. The predicted cross-sectional areas A, which
are referred to as the output network, are represented as a function of C, and @ through the
mapping of the DNN. According to this scheme, the objective and constraints corresponding
to the predicted output values A, as determined by FM, are embedded into the loss function
to guide the network’s training process in searching for the optimal structure. To achieve this
goal, the network is trained by adjusting the parameters to minimize the loss function of the
model. The training phase becomes easy and simple to implement with automatic sensitivity
analysis capabilities. Additionally, to enhance the computational efficiency and reliability of
the model, the BO is applied to automatically tune hyper-parameters of the network. In general,
our framework comprises three fundamental components: training data, DNN architecture, and
auto-tuning hyper-parameters. The following subsections provide a detailed description of

them.

2.1. Training data

Unlike previous work based on data driven approaches, our unlabeled training data only
contains the input data without corresponding output values. More concretely, the connectivity
matrix of truss elements C,(€ Z*") is set up as the entire training data, which does not
include the responses of the structure, such as stress, strain, displacement, force members,
cross-sectional areas, and so on. Here, el is the number of elements, while n denotes the
number of joints. And the value of the kth row and pth column of the connectivity matrix Cs,
which shows connecting the nodes i and j (¢ < 7) of the kth member, is defined as follows

1 for p =1,

Cihp) = —1 for p = 7, (D)
0 otherwise.
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And it is evident that the connectivity matrix can be obtained easily from the structure’s
geometric information without requiring numerical simulations or sampling techniques. It is
worth mentioning that from Eq. [I] the self-normalized training data is the connectivity matrix
whose entries are -1, 0 or 1. And this brings significant benefits to the efficiency of model train-
ing. Firstly, the normalized data helps reduce vanishing or exploding gradient issues and allows
for faster convergence during training. Besides, all self-normalized inputs are given the same
relevance or scale, ensuring that each feature contributes equally to making predictions. This
reduces instability during forward and backward propagations as well as improves the accuracy
and generalization capability of the network. Finally, the self-normalized inputs can reduce the
network’s sensitivity to the hyper-parameters [56, 57]]. Furthermore, the cross-sectional areas,
which are not included in the training data and are unknown quantities, are designed as the
network’s output. The important thing that must be highlighted here is that the objective and
constraints of the structure are determined based on the predicted values of the network with

supporting FM.

2.2. Deep Neural network

One of the machine learning models is the DNN, which is a set mathematical relationship
between inputs and outputs developed during a training phase to replicate the way human brain
operations work. A fully connected DNN with (L + 1) layers, as depicted in Fig. |4} is con-
structed to parameterize the cross-sectional areas A. It comprises of one input layer with n
input neurons and one output layer with one output neuron. Between these two layers, there
are (L — 1) hidden layers, and the choice of the number of hidden neurons and hidden layers
depends on the complexity of specific problems. In this study, the BO algorithm is applied to
automatically optimize them. Note that all units of the current layer are linked to every neuron
in the next layer via the training parameters 6, including the weights and biases. And these
initial parameter values are randomly generated using the truncated normal distribution in the
range [-1, 1]. Accordingly, the predicted cross-sectional area of the ¢th element A; is expressed

as follows

10
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input layer : h°=C,(i,:) € R",
hidden layers: h' = f; (W’Th”‘l) +b’) eR™, for 1<1<L, )

output layer : h’ = f, (WLTh(L_l) + bL) = A; €R,

where h'(.) is output vector of the /th layer; m, is the number of units in the /th hidden layer;
W and b®) denote the weights and biases, respectively; f(.) is the activation function, which
enables the network to learn the complex relationship between the output and input. Several
activation functions, such as ReLLU, LeakyReLLU, Tanh, Sigmoid, Linear, Softmax, and so on,
are widely used to solve various problems. Note that this study utilized the Sofmax function
for the output layer, whilst the activation function of the hidden layers is identified through BO,
which will be explained in detail in the next subsection.

From Eq. [2| it should be noted that the cross-sectional areas A (Cs, 0) are the function of
the training parameters and the connectivity matrix. Therefore, the weights and biases of the
network are now new design variables of the sizing optimization of truss structures, instead
of the cross-sectional areas of truss members as in conventional approaches. In this study, the
weight of the structure is minimized subject to the displacement and stress constraints. The
optimal design problem can be formulated as follows

o el A
Minimize W(A(CS, 9)) = S piLiA; (Cy(i,2), 0), i=1,2, ... el,

i=1

subjected to  Opin < 0, (Cs, 0) Omax, J =1, 2, ..., ng,

<
Omin S 0; (Csa 0) S Omax » 1= 17 27 ceey Bl, (3)
ot <0y (Cs,0) <0, k=1, 2, ..., n,

Al < A;(C,(i,2), 8) < AP,

where W (.) is the weight of the whole truss structure; A denotes the predicted cross-sectional
area vector; /Alz is the predicted cross-sectional area of the ith member; p; and L; are the material
density and length of the ith member, respectively; el is the total number of bars in the structure;
nq refers to the number of displacement constraints; 7, denotes the number of compression
elements; 0 and o are the nodal deflection and the stress, respectively; o,l; is the allowable

buckling stress in the kth member when it is in compression; A" and A;? are the lower bound

11
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Fig. 4. A fully-connected deep neural network architecture.

and the upper bound of the ith cross-sectional area, respectively.

With respect to the predicted cross-sectional areas of the network, the weight of the truss
structure can be easily obtained, while the structural responses, including displacements and
stresses, are found by the FM. Accordingly, the objective and constraint values are embed
into a penalty function, also known as the loss function of the network, to guide the learning
process. Meanwhile, the constrained optimization problem is converted into an unconstrained

optimization one. And Eq. [3is rewritten as follows
~ €2 ~
Minimize £ (6) = (1 +erc (A (cs,a)>) W (A (CS,H)) , )

12
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with

(R(C0)) = Y max (0.0, (A (C.0)). )

in which c is the sum of the violated constraints; n. is the number of constraints in the problem:;
g; represents the jth constraint function; €; and €5 are parameters which control the exploration
and exploitation factors of the design domain. Herein, the parameter ¢, is set equal to 1, as sug-
gested by Hasancebi 58] and Sonmez [59]. The other parameter ¢, adjusts itself dynamically

according to the feedback from the previous iteration and is defined as follows

0 _ (1/k) el if £E-D feasible, o
®) _
o etD if £&=1 infeasible,

where 55’5) represents the penalty coefficient at the ¢th iteration, with 5§1) initially set at 1. The

learning parameter for 59 , denoted as « 1s determined by

k=1+

1
1>1.01. (7

It is worthwhile to note that the constraints obtained by FM are consistent with the under-
lying physical principles and makes the total complementary energy minimum in each itera-
tions. This is a significant difference between the proposed approach and our previously work
PINEEFEN [60]. In addition, note that the output layer uses the Softmax function to limit the out-
put range between 0 and 1. Based on these output network, all predicted cross-sectional areas
are renormalized into the design space [A%, A{"]. Thus, the constraints related to the limita-
tions of the design variables are removed in Eq. This is meaning that the constraints (g;)
only include the displacements and stresses, which satisfy both equilibrium and compatibility
equations. To achieve this goal, the training phase, also known as structural optimization, aims
to minimize the loss function in order to determine the network’s optimal parameters instead

of the cross-sectional areas.

0" =argmin (L (0) ). (8)
[

In order to achieve the goal, Adam optimizer, which is a well-known gradient descent

13
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algorithm, is utilized in this study to perform the training task. Therefore, the derivatives of
the loss function must be determined to adjust the training parameters. By applying the chain

rule to Eq. [} the sensitivity of the loss function is expressed as follows

de oW | OA;
1 s2lyy 1 2 Ay
62( + 810) 9A + ( + 510) aA 80Z

J J

a£ el
= > )

j=1

0A; . .
a6, 18 calculated automatically by the

From Eq. @ it can be observed that the second term

backpropagation algorithm which is integrated into the network. Therein, the remaining term

% can be easily determined using the formulation following
J

oW
=L, 10
314] pj ! ( )

where L; and p; are the length and material density of the jth truss member, respectively.

And the gradient of term 8‘}‘3 is calculated using Just Another eXtensor (JAX) [61] which is

J

a tool for automatic differentiation developed by Google. It has been successfully applied in
computational mechanics fields [62,63]. Consequently, the sensitivity of the loss function with
respect to the training parameters is entirely defined. When the trainable parameters at iteration

(t + 1) of the training process are adjusted as follows

w1 =5 , (11)
(1= 5 (v +y/1- 57

in which m;; and v;; are given by

0t+1 :0t —1n

m = fimy + (1 —51).VL(8,),
Vipr = Bove + (1 = B2) VL(0y),

(12)

where (3; and f3; are the exponential decay rates which are used to control the first m;,; and
second v, raw moment vectors; 1 and ¢ denote the learning rate and constant added to ensure
numerical stability, respectively. In this work, the default settings of the Adam, as suggested by
Kingma and Ba [64], were used to train the model. For more information, the readers can refer

to [64]. Once the training process is completed, the optimum structural weight corresponding

14
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to the optimal parameters of the network is found.

2.3. Auto-tuning hyper-parameters

The parameters associated with the network architecture and training procedure, which are
known as hyper-parameters, cannot be directly estimated from the training data but must be
set before the learning process. They play a paramount role in enhancing the effectiveness of
employing the neural network for real-world applications. Nevertheless, identifying the optimal
hyper-parameters encounters difficulties due to the lack of a closed-form expression for the
Hyper-parameter Optimization (HPO) problem. And it is described as an expensive black-box
problem when searching for extrema. Therefore, conventional algorithms are not suitable for
implementing such tuning tasks. More concretely, the gradient-based algorithms are inadequate
for solving this problem because the gradient information is not available. Meanwhile, the
gradient-free algorithms normally require a large number of training times, which is infeasible
for computationally expensive problems. In addition, the grid and random search techniques
are usually employed to select the optimal hyper-parameters. However, the grid search trains all
possible permutations of hyper-parameters, which can result in training the network for a very
long time. Meanwhile, the random search cannot cover the entire parameter space. And a major
setback for both techniques is that they are completely unaware of previous evaluations [635].
To overcome this computing challenge, optimization techniques based on surrogate models
were suggested for handling expensive optimization problems. Among the different surrogate
modeling techniques, the Bayesian optimization algorithm is known as a popular and powerful
tool for searching the best combination of hyper-parameters of neural networks [66]. It has
demonstrated efficiency and robustness in automatic hyper-parameters tuning of the machine
learning models. Thus, the BO is chosen to find the optimal network. Accordingly, the hyper-
parameters tuning is posed as an unconstrained optimization problem, which can be expressed

as follows

15
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Fig. 5. Schematic of FNN framework into Bayesian optimization for structural optimization.
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B* = argmin Ly, (8), (13)
BeQ

where L., (B) denotes the minimum loss function value found by the network corresponding
to the hyper-parameter vector 8. And it is regarded as the objective function for tuning hyper-
parameters. In order to find the optimal network, a Gaussian Process (GP) as a surrogate
model is constructed to approximate this unknown function. And the acquisition function, also
known as the infill strategy, is utilized to guide the search of hyper-parameters. In this study,
three standard acquisition functions, including Lower Confidence Bound (LCB), Probability of
Improvement (PI), and Expected Improvement (EI), are considered to compare and evaluate
the performance of BO. Details regarding the derived Bayesian formulation of the Gaussian
process model for tuning hyper-parameters are provided in

Fig. [§]illustrates an overall schematic of the suggested framework, which includes two
loops. Therein, the inner loop, as shown in Algorithm |1} represents the training phase of the
FNN to identify the minimum loss function corresponding to the hyper-parameters. And its

basic workflow is summarized as follows:

Step 1: Firstly, the connectivity matrix of truss members, which can be easily collected from
the geometric information of structures, is set as the entire training data for the first

step.

Step 2: Next, a neural network is built using the hyper-parameters suggested by BO in Al-
gorithm [2| Therein, all trainable parameters 8 are initialized using truncated normal

distribution in the range [-1, 1], and updated by using Adam optimizer

Step 3: Calculation of the predicted cross-sectional areas A using the feedforward propagation

with Eq. (2)).

Step 4: Substitution of the values of A into Eq. (3) yields the weight of truss structure, which

is known as the objective function of the structural optimization.

Step 5: Force method is employed to estimate the constraints, including the displacements §

and stresses o corresponding to the predicted cross-sectional areas A.
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Step 6: Substitution of the values of the weight and constraint values into Eq. (@) achieves the

loss function.

Step 7: The gradients of the loss function with respect to the parameters by using Eq. (10,

JAX, and backward propagation.
Step 8: The trainable parameters of the network are updated by Eq. (TT).

Step 9: The training task ends when either the norm of the residual gradient of two consecutive
epochs ||[VL (8;) — VL (0;_1)| must not be greater than 1072 in the last 15 epochs
(Nwmaz = 15) or the maximum number of epoch epoch,,,,, reaches. If the criterion is

not satisfied, then return to step 3; otherwise, stop the training process.

Algorithm 1: Force neural network for structural optimization
Input:
- Structure: material properties, geometry, boundary conditions, loads
- NN: hyper-parameters 3, Adam optimizer
Output: optimal parameters 8*, optimum weight of truss structure W
Calculate the connectivity matrix C, by Eq.
Construct a NN with initial parameters 8 distributed in the range [-1, 1]
Set the parameters of Adam optimizer as the default settings [64]]
while n¢ < nymqq OF epoch,,,, is not reached do
Predict A (C,, ;) using the feedforward propagation

max

N AW N -

6 Compute the weight of truss structure W/ <A (Cs, 0t)) by Eq. (3)

7 Calculate the displacement é (Cs, ;) and stress o (Cg, ;) by FM
8 Loss function £ (6;) is estimated by Eq. ()

oW -
9 o4, 18 calculated by Eq.
Jdc
04
%%Z is calculated automatically by the backward propagation

12 Update trainable parameters 6, of the network by Eq. (11)
13 If [VL(8;) — VL(0;-1)|| <102 thenny=ns+ 1
14 t=t+1

10 is computed by the automatic differentiation JAX

11

Subsequently, the minimum loss value obtained by the Algorithm [I] is forwarded to the
outer loop which allows tuning the hyper-parameters of the network using the BO algorithm.
Clearly, the objective of the outer loop is to pinpoint the hyper-parameters that yield the best
minimum weight of the truss structure with respect to the best minimum loss function value, as

shown in Algorithm 2] The fundamental stages of this algorithm is described as follows:
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Firstly, Latin Hypercube Sampling (LHS) technique is used to collect a set of initial

combination of hyper-parameters 3;., from the design domain.

Based on the above set of hyper-parameters, FNN is trained to estimate the correspond-

ing minimum loss function values Ly, by Algorithm

Next, a set of initial observations D = {ﬂ 1:ps Lmin(ljp) } containing the hyper-parameters

and the corresponding minimum loss function values is collected.
The surrogate model based on the Gaussian process model is built on D.

A next potential hyper-parameter configuration 3, is found by maximizing the ac-

quisition function Eq. (A.6).

FNN with respect to the new sample point 3, is trained to evaluate the minimum

loss function Ly, ,, by Algorithm
The new data point (,Bn—l-h Lnin,, +1) is appended to the existing data D.

Check the stopping criterion (n < Ny, ). If the the stopping criterion is not satisfied,

go to step 4, else the solution with the best weight W*

man

corresponding the optimal

hyper-parameters 6*

3. Numerical examples

In the following section, several numerical examples are investigated to verify and evalu-

ate the capability of the proposed framework for sizing optimization of truss structures. For

this purpose, the obtained results will be compared with the conventional algorithms, such

as DE, Particle Swarm Optimizer (PSO), PSO with passive congregation (PSOPC), Heuris-

tic PSO (HPSO), Harmony Search, Teaching-Learning-Based Optimization, Big Bang-Big

Crunch, and recently published results using the machine learning models like Deep Unsuper-

vised Learning (DUL), and PINEFN. To enhance the reliability and computational efficiency

of the network, the BO algorithm is utilized for the automatic hyper-parameters tuning. In

order to get the best possible network, the initial number of hyper-parameter sets (p) used to
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build the initial surrogate model is set to 10, while the total number of hyper-parameter com-
binations (77,4, ) evaluated throughout the entire BO process is set to 30 in all examples. In
this work, two types of hyper-parameters are chosen to fine-tune the model: one was related to
the network structure, including the number of hidden layers, neurons, and activation function,
and the other was associated with adjusting the learning rates. The allowed ranges of values
for each hyper-parameter are listed in Table I} Note that the number of hidden neurons and
activation functions are the same for all hidden layers. In addition, SoftMax and Adam are
adopted as the activation function for the output layer and optimizer during the performance
process. Furthermore, the training process of the FNN concludes when either the maximum
allowed number of epochs is reached, or the norm of the gradient value is less than 0.01 in the
last 15 epochs (Nymaez = 15) [62,167]]. To evaluate the influence of uncertain quantities, HPO

is executed through thirty independent runs with different initial points.

Algorithm 2: Automatic tuning of DNN hyper-parameters using Bayesian optimiza-
tion
Input:
-p : initial number of hyper-parameter sets
“NPmae: Maximum number of training times
Output: optimal hyper-parameters 8%, best weight of truss structure
1 LHS is used to collect hyper-parameters ., from the design domain
Training the network corresponding to 1., to estimate the minimum loss function
values L, o)

*
man

[

3 Collect a set of initial observations D = {,3 L:ps Lminu;p)}

4 Current best combination of hyper-parameters 87 = arg min L, (8;)

Bi€D
s Setn=p
¢ while n < ny,,0. do
7 GP’s parameters are found by maximizing likelihood function
8 Build the GP model on D,,
9 Find 8,1 by maximizing Eq.

10 Training FNN with the hyper-parameters 3,41 to evaluate L., ., by Algorithm
11 Append D, , =D, U { (,Bn+1, Eminn+1) }

12 Estimate 8*
13 Update B+ = B*
14 n=n+1

Meanwhile, the parameters of the DUL, PINEFN, and DE algorithms are set similar to

Hau et al. [60, 68]. Due to the stochastic nature of the metaheuristic algorithm, the best
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result is determined through 30 independent runs to ensure the reliable solution of the DE.
To get an unbiased comparison of the different models, all numerical examples were executed
on a personal computer utilizing the Pytorch library in the Python language. Furthermore,

all computations were performed on a desktop PC equipped with an Intel Core 15-8500 CPU

running at @ 3.0 GHz, 16 GB of RAM, and Windows 10.

Table 1
Configuration space for the hyper-parameters of the network.
Hyper-parameter Search space Type
No. of hidden layers [1, 4] Integer
No. of hidden neurons [20, 60] Integer
Activation function [ReLU, Sigmoid, Softmax, Tanh, LeakyReLU] Categorical
Learning rate [0.001, 0.1] Real
Step size [2, 10] Integer
Gamma [0.05, 0.8] Real
AN
N
=
i
=
S Y ) X
Py

Fig. 6. A 10-bar planar truss structure.

3.1. 10-bar truss

A ten-bar planar truss structure, subjected to two loading conditions as shown in Fig. [6]
is examined as the first design optimization problem. The loading conditions are as follows:
(1) the first condition with P; = 444.822 kN and Py = 0 kN; (2) the other condition with P;
= 667.233 kN and Py = 222.411 kN. The cross-sectional areas of truss members, which are

considered as continuous design variables, have their minimum values specified at 0.645 cm?.
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All members are made of a material with an elastic Young’s modulus of 68947.573 MPa, mass
density of 27679.905 kg/m?, and allowable stresses of 172.369 MPa in tension and compres-
sion. In addition, the displacements of free nodes are restricted to +5.08 cm in all directions.
In both loading cases, the network performs training with the maximum epoch size of 1000 as
a stopping criterion. Furthermore, all infill strategies within the BO framework utilize the same

set of 10 initial hyper-parameter configurations for a fair comparison.

Table 2
Statistics of the optimal weight (kg) with different acquisition functions for the 10-bar planar

truss (Case 1).

Metric

Acquisition functions

PI LCB EIl
Min 2295.855 2295.831 2295.655
Max 2296.907 2296.716 2295917
Mean 2296.280 2296.353 2295.749
Std 0.118 0.102 0.027
95% CIU 2296.303 2296.373 2295.754
95% CIL 2296.257 2296.333 2295.744

Table 3
Optimum hyper-parameters of the network obtained using the BO with different acquisition
functions for the 10-bar planar truss (Case 1).

Acquisition Hyper-parameter
function No. of hidden No. of hidden Learning Activation Step
. ) Gamma
layers neurons rate function size
PI 3 60 0.100 RelLU 2 0.050
LCB 4 25 0.010 RelLU 8 0.500
El 3 60 0.022 RelLU 5 0.158

For the first loading case, a comparison of the statistics of the optimal weight, including
minimum (Min), maximum (Max), mean, standard deviation (Std), 95% confidence interval
upper (95% CIU), and lower (95% CIL) bounds found by the network using various infill strate-
gies, are summarized in Table 2| Additionally, Table 3| presents the optimal hyper-parameters
of the network corresponding to the best weight. Firstly, it is easily seen that the best optimal
weight obtained by various acquisition functions are in good agreement. Although there were
not significant differences between the minimum weights, the EI infill strategy identified the
lightest design overall (W,,,;,, = 2295.655 kg; Std = 0.027 kg; 95% CI [2295.754, 2295.744]
kg), followed by the LCB (W,,,;,, =2295.831 kg; Std = 0.102 kg; 95% CI [2296.373, 2296.333]
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Fig. 7. Convergence histories of the HPO using BO for the 10-bar planar truss (Case 1).

kg), and then the PI (W,,;,, = 2295.855 kg; Std = 0.118 kg; 95% CI [2296.303, 2296.257] kg).
In addition, the mean value (2295.749 kg) is very close to the 95% CIU and 95% CIL with
the smallest Std, and this indicates the high reliability of the EI infill strategy in identifying the
optimal hyper-parameters of the network. From the data in Table[3] it is observed that although
both EI and PI indicate a similar architecture network, there are different parameters associated
with learning rates. And this shows the significant role of adjusting the learning rate for fitting
the neural network. Besides, the ReLLU activation function, identified by all infill strategies,
possesses salient advantages, such as computationally efficiency, fast convergence, parameter-
free, and helping to prevent gradient saturation [69, [70]. Finally, the convergence histories
of the optimal hyper-parameters tuning process using different infill strategies are depicted in
Fig. |7 for the first loading case. Note that all convergence curves coincide during the first 10
iterations because they use the same ten initial hyper-parameter sets generated by the LHS to
ensure a fair comparison between the infill strategies. It is obvious that the EI demonstrates
its efficiency and faster convergence in tuning the hyper-parameters with the best minimum

weight design compared to the others. As a result, it is selected as the infill strategy for BO in
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Fig. 8. Weight convergence histories of the 10-bar truss obtained using the FNN and other
algorithms for the first load case.

Tables [] - [5| summarized a comparison of the optimal solutions obtained by our framework
with the optimal network and other studies for the first loading case. It is easily seen that
the optimum weight obtained through FNN (2295.655 kg) agrees well with the PSOPC [71]
(2295.631 kg), HPSO [71] (2295.595 kg), PINEEN [60] (2295.658 kg), and DE (2295.580 kg)
without violating constraints. Although a lighter design found by Lee [72] (2294.216 kg), it vi-
olates the design constraints with maximum constraint violation error (CVE) 0.091%. As seen
from Table [3] it is evident that none of the constraints are violated. In addition, the statistical
results obtained by the proposed model show quite good agreement with the DE. However, in
terms of reliability, the present model outperforms the DE algorithm regarding the statistics
of the minimum weight while still maintaining accuracy. The weight convergence histories of
three algorithms are depicted in Fig. [§] As observed, FNN and PINEFN have similar conver-
gence rates that rapidly decrease in the first 200 epochs. However, our model tends to be stable

and achieves the optimal weight around 500 epochs, while the PINEFN needs 700 epochs
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to approach the optimal solution. In contrast, the DE algorithm exhibits slow convergence
and requires a significant number of Finite Element Analysis (FEA) evaluations (6680) to get
the optimal weight. This can be explained by the fact that the DE is the gradient-free algo-
rithm, so it demands a large number of function evaluations for optimization. Meanwhile, FNN
and PINEFN models are designed based on the neural network, which serves as an optimizer
for solving optimization problems. Thus, the weight optimization process for both these ap-
proaches relied on the gradient descent method and automated sensitivity analyses. And that’s
why it significantly reduces the number of function evaluations, as well as their convergence
rates are much faster than the DE.

For the second load case, the optimal results obtained by FNN in comparison with other
studies, including the hyper-parameters, design variable, weight, statistics, and convergence
histories, are reported in Tables [6] [7} [8] and Figs. OHIOl Accordingly, the proposed frame-
work found the minimum weight (2121.507 kg) with respect to the best combination of hyper-
parameters (3, 40, 0.076, ReLLU, 10, 0.303) obtained after 23 training iterations. It can be
easily seen that the minimum weight obtained by Rizzi [73] (2121.415 kg) and FNN (2121.507
kg) are ranked as the first and second best among all compared algorithms without violating
constraints, as shown in Table [/ Although the weight obtained by Lee [72] (2117.737 kg)
represents the lightest designs, the constraints are violated with the CVE of 0.195 %. As the
first load case, the data show that the FNN can find the optimum design more efficiently and re-
liably than the DE. More concretely, the deviation (0.168 kg) between the maximum (2121.675
kg) and minimum (2121.507 kg) optimal values of the structural weight found by FNN is very
small, whilst it is 4.221 kg for the DE algorithm. Additionally, it is clear that the Std of the
optimal objective function value obtained by the present model (0.021 kg) is relatively small
compared to that of the DE (0.148 kg). For the DE algorithm, the stress constraint at member
5 is a little bit violated. Meanwhile, the structural responses found by the FNN satisfy all the
constraints. A comparison of the structural weight convergence histories is depicted in Fig. [I0]
Clearly, the FNN converges more rapidly than the PINEFN and DE. It reaches the optimal mass
of structure after only 800 epochs. On the contrary, the PINEFN and DE require 900 epochs

and more than 80 times the number of analyses (8000), respectively.
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Table 4

Comparison of the obtained results for the 10-bar planar truss (Case 01).

A: (em?) Li [71] Schmit Rizzi Lee Mai [60] This study

! PSO  PSOPC HPSO 9] (73] [72] PINEFN DE FNN
Ay 215929 197.219 198.090 215.690 198.264 194.516 196.993 196.774  196.993
A, 0.710 0.645 0.645 0.645 0.645 0.658 0.652 0.645 0.652
As 149.529  148.219 149464 156.516 154.413 146.516  149.729 149.774  149.742
Ay 99.839 97.729 97.955 92.000 95.052 98.516 98.258 98.052 98.219
As 23.542 0.645 0.645 0.645 0.645 0.658 0.645 0.645 0.645
Ag 0.748 3.529 3.555 0.645 0.645 3.510 3.555 3.523 3.561
A 53.729 48.342 48.129 53.793 55.107 48.652 48.116 48.161 48.103
Ag 150.580  136.510 135.342  133.806  135.187 139.097 135.826  136.206  135.658
Ag 148.477  139.071  138.761  127.032  140.877 138.387 138.677 138.522 138.871
Aqg 1.226 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645
Whest (Kg) 2508.139 2295.631 2295.595 2308.332 2302.734 2294216 2295.658 2295.580 2295.655
CV E ez (%) None None None 21.136 None 0.091 None None None
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Table 5

Statistics of the constraints and weight for the 10-bar planar truss (Case 01).

Metric DE FNN

vy (cm) vy (cm) o5 (MPa) W (kg) vy (cm) vy (cm) o5 (MPa) W (kg)
Min -5.080 -5.060 172.305 2295.580 -5.080 -5.057 172286 2295.655
Max -5.080 -5.057 172369 2296.411 -5.080 -5.057 172369 2295.917
Mean -5.080 -5.057 172.357 2295.768 -5.080 -5.057 172.339 2295.749
Std 0.000 0.000 0.003 0.036 0.000 0.000 0.010 0.027
95% CIU  -5.080 -5.057 172.356 2295.754 -5.080 -5.057 172.341 2295.754
95% CIL  -5.080 -5.057 172.358 2295.780 -5.080 -5.057 172.337 2295.743

Table 6

Optimum hyper-parameters obtained by using the BO for different problems.

Hyper-parameters

Test problems No. of hidden No. of hidden Learning  Activation Step

layers neurons rate function size Camma
10-bar truss (case2) 3 40 0.076 RelLU 10 0.303
17-bar planar truss 3 57 0.053 ReLU 8 0.535
25-bar space truss 1 26 0.048 ReLLU 10 0.499
72-bar truss (case 1) 3 33 0.084 LeakyReLU 4 0.304
72-bar truss (case 2) 4 54 0.031 LeakyReLU 8 0.631
120-bar dome truss 2 45 0.001 LeakyReLU 8 0.339
200-bar planar truss 1 30 0.064 LeakyReLU 8 0.307

3.2. 17-bar truss

Next, a 17-bar plane truss structure illustrated in Fig. |1 1|is examined as the second numeri-

cal example for size optimization. The structure is subjected to a vertical load of 444.822 kN in

the negative y-direction at node 9. All cross-sectional areas of elements are considered as de-

sign variables. The Young’s modulus and material density are 206842.718 MPa and 7418.214

kg/m? for all members. The displacements of free nodes are limited to +5.08 cm, and allowable

stresses of members are set to 344.738 MPa in both compression and tension. And a maximum

of 1000 epochs is used as a stopping criterion for the training process.

27



2124.5\L- I ‘e I T | | -

2124

— 21235

2123

Weight (kg

21225

2122

W, .= 2121507 (kg)

21215 ——— — — — — T T — — — — — — aa

5 10 25 30
Number of training times

Fig. 9. Convergence history of the HPO using BO for the 10-bar truss structure for the second
load case.

T T T T T T T T T
————— DE
coo0 b - - ~PINEFN |
— NN
4500 r T T i
g 2126 b
& 4000 | _
=
2 2124t .
= 3500 f .
2122 = - - o
3000 T
r". 1 1 1 1 1 1 1 1
"ul 100 200 300 400 500 600 700 800 900 1000
]
2500 ‘s .
-‘-‘
) N N e _I. e n - -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of FEAs/ epochs
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Table 7

Comparison of the obtained results for the 10-bar planar truss (Case 02).

A; (em?) Li [71] Schmit Rizzi Lee Mai [60] This study

! PSO  PSOPC HPSO [9] [73] [72] PINEFN DE FNN
Ay 147968 153.180 150.664 156.710 151.826  150.000  153.103  151.193  152.690
Ay 0.729 0.652 0.645 0.645 0.645 0.658 0.652 0.645 0.645
Az 163.580 163.142 164.529 150.619 163.168 166.000 162.826 163.297 162.826
Ay 92.729 92.987 91.935 88.090 92.735 93.613 91.729 93.181 92.819
As 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645
Ag 12.839 12.703 12.723 12.710 12.708 12.755 12.742 12.710 12.710
A 79.652 79.755 79.761 81.742 79.929 78.774 79.974 79.897 79.877
Ag 83.374 81.897 83.187 80.929 82.742 81.355 82.342 82.890 82.226
Ag 133.406  131.116  131.329 141.748 131.148 131.355 131.568 131.077 131.303
Aqg 0.645 0.665 0.652 0.645 0.645 0.645 0.645 0.645 0.645
Whest (kg) 2122.572 2121.769 2121.583 2128.183 2121.415 2117.737 2121.565 2121.435 2121.507
CV E ez (%) None None None None None 0.195 None 0.000 None
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Table 8

Statistics of the constraints and weight for the 10-bar planar truss (Case 02).

Metric DE FNN

v9 (cm) w4 (cm) o5 (MPa) o (MPa) W (kg) v9 (cm) w4 (cm) o5 (MPa) o (MPa) W (kg)
Min -5.080 -3.973 172361 172330 2121.435 -5.080 -3.962 172.362 172355 2121.507
Max -5.080 -3.909 172.369 172.369 2125.655 -5.080 -3.955 172.369 172369 2121.675
Mean -5.080 -3.947 172367 172.360 2121.885 -5.080 -3.957 172368 172.367 2121.587
Std 0.000 0.003 0.000 0.002 0.148 0.000 0.000 0.001 0.001 0.021
95% CIU  -5.080 -3.950 172.367 172.360 2121.832 -5.080 -3.957 172.368 172367 2121.591
95% CIL  -5.080 -3.947 172.367 172.361 2121.938 -5.080 -3.960 172.368 172.367 2121.583




475

476

477

478

479

480

481

482

484

485

486

487

488

489

490

491

o 254m . 254m
5 o % |
A
17 o
10 :
8 12 13 g
=
11 14 by o
5 7 9
444 822 kN

Fig. 11. A 17-bar planar truss structure.

As the previous example illustrates, the optimal hyper-parameters, as shown in Table [6]and
Fig. [I2] were found after 30 training times by the BO using the EI infill strategy. Additionally,
Tables [9] and [I0] report the optimal network’s results, including the design variables, weights,
constraints, and statistics. With a weight of 1171.128 kg, the FNN is the second-lightest design,
surpassed only by the optimal weight obtained by Khot [3] (1171.126 kg). However, it is
smaller than the other studies (PSO [71]:1235.753 kg; PSOPC [71]: 1171.561 kg; HPSO [71]]:
1171.148 kg; PINEFN [60]: 1171.162 kg; and DE 1171.133 kg). Although the smallest weight
found by Lee [72] is 1170.636 kg, it violates the design constraints (0.044%). Furthermore,
the 95% CI values obtained by FNN are quite close to the minimum, maximum, and mean
optimal weights, with a very small deviation (0.004 kg), whilst the Std of the DE (0.034 kg)
is 8 times greater than that of our approach. From the data in Table [I0] and Fig. it is
easily seen that the FNN performs better than the DE in terms of the reliability as well as the
number of structural analyses. Our model rapidly indicates the optimum weight with only 1000
analyses, whereas the DE takes 9960. As can be seen in the plot, the convergence speed of the
proposed framework with the optimal network is improved and faster than that of the PINEFN.
Therefore, this once again demonstrates the effectiveness of automatic hyper-parameter tuning

of the FNN.
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works.

32



(13

Table 9

Comparison of the obtained results for the 17-bar planar truss.

A; (em?) Lee Li [[71] Khot Adeli  Mai [60] This study

! [72] PSO  PSOPC HPSO (3] [74] PINEFN DE FNN
Ay 102.071  101.716  103.103  102.555 102.774 103413 102.619 103.026 102.761
A, 0.697 14.600 0.645 0.665 0.645 0.690 0.729 0.645 0.652
As 77.393 89.381 78.335 78.013 77.871 78.600 77.858 77.903 77.877
Ay 0.645 0.684 0.645 0.645 0.645 0.710 0.645 0.645 0.645
As 52.581 73.264 52.245 52.019 52.045 54.303 52.090 51.955 52.019
Ag 35.529 25.258 35.910 36.071 35.884 36.871 35.852 35.864 35.890
Ar 76.316 52.071 75.690 76.871 76.987 73.103 76.884 77.148 77.000
Ag 0.645 0.645 0.645 0.645 0.645 0.677 0.645 0.645 0.645
Ag 51.187 37.742 51.497 51.387 51.258 47.103 51.284 51.252 51.232
A 0.645 14.800 0.729 0.645 0.645 0.742 0.665 0.645 0.645
Ay 26.406 40.729 26.284 26.297 26.161 26.103 26.200 26.058 26.174
A 0.645 21.774 0.852 0.645 0.645 0.652 0.645 0.645 0.645
Az 36.516 35.058 36.561 36.581 36.497 36.200 36.548 36.426 36.503
Aqy 26.200 25.277 25.748 25.794 25.806 26.103 25.839 25.806 25.819
Ais 36.490 22.800 35.839 35.794 35.858 33.239 35.806 35.794 35.858
A 0.645 14.929 0.652 0.665 0.645 0.690 0.671 0.652 0.645
Aqr 36.013 22.852 35.839 35.723 35.994 34.103 35.994 35.961 35.987
Whest (kg) 1170.636 1235.753 1171.561 1171.148 1171.126 1176.809 1171.162 1171.133 1171.128
CVE 0z (%) 0.044 None None None None 1.693 None None None
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Table 10
Statistics of the constraints and weight for the 17-bar planar truss.

Metric DE FNN

vg (cm)  W(kg)  wg(cm) W (kg)
Min -5.080 1171.133 -5.080 1171.128
Max -5.080 1171.971 -5.080 1171.165
Mean -5.080 1171.282 -5.080 1171.134
Std 0.000 0.034 0.000 0.004
95% CIU  -5.080 1171.270 -5.080 1171.135

95% CIL  -5.080 1171.294 -5.080 1171.133

3.3. 25-bar space truss

The next example deals with the design of a 25-bar space truss structure, as shown in
Fig. All truss members are made of a material with a density of 2767.990 kg/m® and
a Young’s modulus 68947.573 MPa. For this structure, two loading cases, as presented in
Table 1T}, are considered. In addition, the cross-sectional areas of members are classified into 8
groups according to the design variables and their corresponding allowable stresses, as listed in
Table[I2] Besides, the displacements of free nodes are constrained within the interval [- 0.889,
0.889] cm. To find the minimum mass of the structure, the network performs training with the

maximum number of analyses equal to 1000.

Table 11
Loading conditions for the 25-bar space truss(kN).
Case 1 Case 2
Node — F, F. F, F, L
1 0 88.964 -22.241 4448 44482 -2.224
2 0 -88.964 -22.241 0 44482 -2.224
3 0 0 0 2.224 0 0
6 0 0 0 2.224 0 0
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Table 12
Allowable stresses for the structural elements of the 25-bar space truss.

A; Compressive stress (MPa) Tension stress (MPa)
Ay 241.951 275.790
Ay-As 79.910 275.790
Ag-Ag 119.314 275.790
Ap-Anr 241.951 275.790
Ap-Ais 241.951 275.790
Aqy-Aqy 46.602 275.790
Aqg-Agy 47.981 275.790
Aoo-Ags 76.408 275.790

Fig. 14. A 25-bar space truss structure.
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The BO with the EI strategy indicated the optimal hyper-parameters of the network af-
ter only 20 training iterations, as shown in Table [6] and Fig. [I5] Accordingly, the optimal
architecture of the network found by our approach (10-26-1) is smaller than those of DUL (6-
20-20-20-1) and PINEFN (6-30-30-30-2). Therefore, the smaller network trains faster due to
requiring fewer weights and biases. To evaluate the performance of the proposed method, a
comparison of the optimal results found by the FNN and the other algorithms is reported in Ta-
bles[I3]and [I4] As expected, it can be observed that the optimal weight identified by the FNN
(247.321 kg) agrees well with DUL [60] (247.529 kg) and Camp [75] (247.380 kg) without
violating constraints. Note that Lee [[72]] found the smallest weight (246.927 kg), but it violates
the constraints with an error of 0.206%. Although the results gained by Li [71] (247.294 kg),
Degertekin [76] (247.249 kg), PINEEN [60] (247.308 kg), and DE (247.282 kg) are slightly
lighter than the FNN, the errors between them and Degertekin [[76] are less than 0.02%. Ac-
cording to the obtained statistical results, the present framework demonstrates the stability of
optimized weight with the small standard deviation of 0.008 kg. A visual representation of
the convergence histories between the FNN, DE, DUL, and PINEFN is illustrated in Fig. @
As the above examples, the proposed approach converges faster than the DE and DUL. It only

requires 1000 structural analyses, while the DUL and DE demand 1500 and 7520, respectively.

Table 13
Optimization results obtained for the 25-bar space truss.
A; (em?) Lee Li Kaveh Degertekin Mai [60] Camp This study
' [72] [71] [77] [76] DUL PINEFN [75] DE FNN
Ay 0.303 0.065 17.174 0.065 0.084 0.084 0.065 0.065 0.077
Ay-As 13.045 12.710  12.858 13.361  12.587 12.781 13.497 12.832 12.865
Ag-Ag 19.032 19.458 19.716 19.077 19.135 19.381 19.123  19.290 19.252
Aqo-Apy 0.065 0.065 0.065 0.065 0.077 0.071 0.065 0.065 0.090
Aqo-Ags 0.090 0.065 0.065 0.065 0.084 0.071 0.065 0.065 0.071
Ay-Agr 4.439 4.477 4.290 4.445 4.497 4.432 4.445 4.413 4.419
Aig-Axn 10.690 10.845 10.594 10.458 11.135 10.819 10.329 10.819 10.813
Ago-Ass 17.181 17.052 17.284 17.271  17.052 17.135 17.329 17.181 17.187
Whest (kg) 246.927 247.294 247.280 247.249 247.529 247.308 247.380 247.282 247.321
CV E, 02 (%) 0.206 None 2.06 None None None None None None
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Table 14

Statistics of the constraints and weight for the 25-bar space truss.

Metric DE FNN
vy (cm) vy (cm) W (kg) vy (cm) vy (cm) W (kg)
Min 0.889 -0.889 247.282 0.889 -0.889 247.321
Max 0.889  -0.889 247.455 0.889  -0.889 247.409
Mean 0.889 -0.889 247.292 0.889 -0.889 247.358
Std 0.000  0.000 0.006 0.000  0.000 0.008
95% CIU  0.889 -0.889 247.290 0.889 -0.889 247.359
95% CIL 0.889  -0.889 247.294 0.889  -0.889 247.357
247.9 . . . . :
247.8‘! v v -
247.7 F -
o0
=)
= 2476 F i
o0
)
=
2475 -
247.4 F -
| WomT3i0e) - -
247.3 ' ' ' ' '
5 10 15 20 25 30

Number of training times

Fig. 15. Convergence history of the HPO using BO for the 25-bar space truss.
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Fig. 16. Weight convergence histories of the 25-bar space truss using the FNN and other works.

3.4. 72-bar space truss

A 72-bars space truss shown in Fig. [T7]is considered for the next numerical example. All
cross-sectional areas of the truss members are divided into 16 groups corresponding to design
variables, as listed in Table@ The bars are made of the same material with Young’s modulus of
68947.572 MPa, density of 2767.990 kg/m?, and allowable stress of £172.369 MPa. Besides,
the displacements of joints are restricted to £0.635 cm. This structure is subjected to two
loading conditions, as tabulated in Table@ Therefore, the lower bounds of the design variables
are set at 0.645 cm? and 0.065 cm? for the first and second cases, respectively. To achieve the

goal, the maximum epoch is set to 1000 for this particular application.

Table 15
Loading conditions for the 72-bar space truss (kN).
Case 1 Case 2
Node jo F, F. I, F, F.
17 22241 22241 -22.241 0 0 -22.241
18 0 0 0 0 0 -22.241
19 0 0 0 0 0 -22.241
20 0 0 0 0 0 -22241
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Fig. 17. A 72-bar space truss structure.

Figs. and Table [ present the convergence curves and the network’s best hyper-
parameters for different loading cases. From these graphs, the infill strategy EI with 10 initial
samples found two best-fitted hyper-parameter sets, which are found after 27 and 22 samples
for the first and second loading cases, respectively. A comparison between the FNN with the
optimal network and other algorithms for the structural optimization is reported in Tables [T6]
and|18| From the data in these tables, the results reveal that: 1) the optimum weights found
by the proposed approach are ranked as the second-best and best designs without violating con-
straints for the first and second loading cases, respectively; 2) the standard deviations obtained
by the FNN are small (0.005 kg and 0.026 kg); 3) clearly, the confidence upper bounds of the
optimal weights are quite close to the confidence lower bounds. Based on these results, our

model has once again demonstrated its effectiveness in automatic hyper-parameter tuning, as
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well as its capability to yield a high reliability solution for the optimization of truss structure.
Additionally, Figs. [19] and [21] depict the convergence histories of the FNN, DE, DUL, and
PINEFN. As can be seen on these plots, the proposed FNN model’s learning curves always
converge more quickly than the DUL and conventional DE algorithms, and similar to the learn-
ing process of the PINEFN. Both our model and PINEFN indicate the optimal solution with
only 1000 analyses, while the DUL (2500) and DE (15000) are still far behind. Therefore, the

present approach shows more efficiency than the conventional algorithms.
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Fig. 18. Convergence history of the HPO using BO for the 72-bar space truss (Case 1).
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Fig. 19. Weight convergence histories of the 72-bar space truss using the FNN and other works

(Case 1).

Table 16

Optimization results obtained for the 72-bar space truss with displacement and stress

constraints (Case 01).

A; (em?) Kaveh Camp Degertekin Bekdag Mai [60] Ehsan This study

¢ [77] [[75] [76] [78] DUL PINEFN [79] DE FNN
Aq-Ay 12.284  11.987 12.297 12.103 12.006 11.981 12452 11974 11.865
As-Aqg 3.329 3.265 3.265 3.329 3.232 3.258 3.284 3.245 3.265
Aq3-Ag 0.645 0.645 0.645 0.645 0.658 0.645 0.645 0.645 0.645
Aq7-Agg 0.645 0.645 0.645 0.645 0.652 0.645 0.645 0.645 0.645
Aqg-Agy 8.116 8.052 8.142 8.381 8.155 8.090 8.045 8.116 8.110
Agz-Asg 3.252 3.400 3.297 3.387 3.265 3.252 3.310 3.239 3.252
Asq1-Asy 0.645 0.645 0.645 0.645 0.652 0.645 0.645 0.645 0.645
Ass-Asg 0.645 0.652 0.645 0.645 0.652 0.645 0.645 0.645 0.645
Asr-Ayg 3.342 3.361 3.432 3.206 3.206 3.194 3.419 3.219 3.194
Ay-Agg 3.361 3.335 3.329 3.284 3.277 3.277 3.335 3.277 3.284
Ayg-Ass 0.645 0.645 0.645 0.645 0.658 0.645 0.645 0.645 0.645
Asz-Asy 0.652 0.652 0.645 0.645 0.665 0.645 0.645 0.645 0.645
Ass-Asg 1.013 1.013 1.006 1.019 0.645 0.645 1.006 0.645 0.645
Asg-Ags 3.497 3.555 3.542 3.439 3.348 3.368 3.510 3.374 3.374
Agr-Arg 2.665 2.529 2.645 2.639 2.587 2.568 2.652 2.574 2.574
Ar-Arg 3.716 3.819 3.677 3.697 3.465 3.458 3.626 3.458 3.465
Whest (kg) 172.211  172.297 172.1973 171.95 167.8487 167.675 172.208 167.669 167.676
CV E, 0z (%) None None None None None None None None None
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Table 17

Optimization results obtained for the 72-bar space truss with displacement and stress

constraints (Case 02).

A; (em?) Adeli Adeli  Sarma Lee Li Mai This study
‘ [80] [37] [81] [72] [71] [60] DE FNN
A-Ay 13.071 17.774 11.174 12.665 12303 11.839 12348 12.239
As-Aqg 3.439 3.290 3.368 3.103 3.381 3.355 3.323 3.323
Ai3-Asg 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
Ai7-Agg 0.065 0.065 0.084 0.071 0.065 0.065 0.065 0.065
Aq9-Ago 7.465 8.839 8.677 7.955 8.310 8.477 8.445 8.394
Ags-Asp 3.671 3.271 3.555 3.265 3.374 3.342 3.348 3.355
As1-Asy 0.065 0.065 0.065 0.071 0.065 0.065 0.071 0.071
Ass-Asg 0.065 0.065 0.084 0.077 0.065 0.071 0.123 0.071
As7-Ayo 3.316 3.103 3.174 3.471 3.510 3.361 3.387 3.361
Ag-Agg 3.090 3.277 3.516 3.439 3.406 3.348 3.335 3.329
Ayo-Ass 0.065 0.065 0.426 0.065 0.123 0.065 0.065 0.071
Asz-Asy 0.065 0.413 0.084 1.077 0.129 0.652 0.684 0.658
Ass-Ass 1.019 1.387 1.148 1.039 1.135 1.084 1.142 1.084
Asg-Ags 3.548 3.342 3.381 3.497 3.452 3471 3.426 3.439
Ag7r-Aro 2.226 2.703 2.555 3.084 2.748 2.923 2.935 2.897
Az1-Aqo 3.213 3.252 3.839 3.555 3.948 3.768 3.774 3.729
Whest (kg) 3172.052 170.778 165.289 165.257 165.498 165.130 165.708 165.099
CV E 0z (%) - - - - - None None None
Table 18
Statistics of the weight for the 72-bar space truss (kg).
Algorithm M?tI'lC
Min Max Mean Std 95% CIU 95% CIL
Case 1
DE 167.669 167.713 167.678 0.001 167.678 167.679
FDNN 167.676 167.720 167.695 0.005 167.696 167.694
Case 2
DE 165.708 165.892 165.747 0.007 165.744  165.749
FDNN 165.099 165.305 165.180 0.026  165.185 165.174
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Fig. 20. Convergence history of the HPO using BO for the 72-bar space truss (Case 2).
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3.5. 120-bar dome truss

A 120-bar dome truss, as shown in Fig. 22] is investigated as the fifth example. As depicted
in this plot, the design variables, representing the cross-sectional areas of the members, are
categorized into seven groups. All members are made of steel with a yield stress (o) of 399.896
MPa, an elasticity modulus (E) of 209945.360 MPa, and a density of 7971.813 kg/m?. The
minimal values for the design variables are 5 cm?. According to the AISC ASD (1989) [82],

the permissible tensile (0}) and compressive (o) stresses are calculated as follows:
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0! =0.60, for o; >0,

(14)
O-Z‘c for o; < O’
with
_ A 5, 3% A '
of = [(t 26%) Uy} / (3 T 30, scg) for \; < Cc, is)
% for \; > Cg,

where L, denotes the truss member length; Co is the slenderness factor that separates the
elastic and inelastic buckling regions (Cc: = V2712E /oy); i represents the slenderness ratio
(\i = kL;/ry); k is the effective length factor; r; is the radius of gyration (r; = aAf); a and
b denote constants, which are set to 0.4993 and 0.6777 for bars. In this example, where only
vertical loads act on the structure in the negative direction of the z-axis, they are composed
of 60.007 kN at node 1, 29.999 kN at nodes 2-13, and 10 kN at nodes 14-37. Besides the
stress constraints, all vertical displacements of free joint are restricted to 0.5 cm. Similar to the
previous examples, the total number of epochs is 1000 for the training process.

The solution and iteration history for addressing the hyper-parameters optimization prob-
lem using the infill sampling criteria EI of the BO are shown in Table [6] and Fig. 23] A
comparison between the obtained results corresponding to the optimal network and other al-
gorithms is summarized in Tables [19| and As expected, the BO requires only 30 training
iterations to identify the optimal combination of hyper-parameters (2, 45, 0.001, LeakyReL.U,
8, 0.3387), resulting in the minimum weight (14741.589 kg). It is worth mentioning that the
FNN achieves the lightest design overall. It is interesting here that our model outperforms the
state-of-the-art approach PINEFN (14744.442 kg) by Mai et al. [60] in terms of the quality
of solution. Furthermore, the best optimum weight is very close to worst (14741.612 kg) and
mean (14741.601 kg) weights with the small Std values (0.003 kg). On the other hand, the
95% CI upper (14741.601 kg) and lower (14741.600 kg) bounds are not significantly different
as well as close to the best weight. From the obtained statistical results of the objective and
constraints, the FNN provides higher reliability than the DE algorithm. Fig. [24] displays the
learning curves of the present method, PINEFN, and DE for the structural weight. Once again

shows that our approach converges the fastest compared to the other methods.
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Table 19

Comparison of the obtained results for the 120-bar dome truss.

A, (em?) Kaveh Kaveh Kaveh Talataharj Kaveh Kaveh Mai This study
’ (83] (84] [85] (86] [87] [77] [60] DE FNN
Ay 19.968 19.529 19.510 19.510 19.510 19.510 12.368 12.342 12.342
A 92.935 94.232 94.948 95.355 95.361 95.374 96.310 96.052 96.058
As 32.387 32.542 32.774 32.626 32.594 32.587 37.116 37.097 37.084
Ay 21.626 20.252 20.239 20.232 20.239 20.239 16.561 16.600 16.548
As 55.684 55.116 54.845 54.729 54.839 54.826 64.716 64.826 64.858
Ag 22.142 21.723 21.303 21.355 21.219 21.239 23.090 22.968 23.077
Az 16.123 16.110 16.110 16.116 16.110 16.110 12.748 12.768 12.768
Whest (kg) 15081.447 15082.808 15082.137 15082.500 15081.969 15081.833 14744.442 14741.630 14741.589
- - - - - None None None

CVEmaz (%) B
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Table 20

Statistics of the constraints and weight for the 120-bar dome truss.

Metric DE FNN

vy (cm) w3 (cm) 0190 (MPa) 065 (MPa) W (kg) uy4 (cm) w3z (cm) o099 (MPa) o6y (MPa) W (kg)
Min 0.091 -0.500 -19.843 12.534 14741.631 0.094 -0.500 -19.509 12.643 14741.589
Max 0.097 -0.500 -18.732 12.786 14746.243 0.094 -0.500 -19.475 12.677 14741.612
Mean 0.094 -0.500 -19.417 12.671 14742.681 0.094 -0.500 -19.494 12.657 14741.601
Std 0.000 0.000 0.041 0.011 0.233 0.000 0.000 0.003 0.003 0.003
95% CIU 0.094 -0.500 -19.432 12.667 14742.597 0.094 -0.500 -19.493 12.658 14741.601
95% CIL 0.094 -0.500 -19.403 12.675 14742.764 0.094 -0.500 -19.494 12.657 14741.600
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Table 21
Design variables of the 200-bar planar truss.

Design Member group Design Member group
variables variables
Ay 1,2,3,4 Asg 82, 83, 85, 86, 88, 89,

91, 92, 103, 104, 106,
107, 109, 110, 112, 113

A, 5,8,11, 14, 17 Air 115,116, 117, 118

As 19, 20, 21, 23, 24 Ass 119, 122, 125, 128, 131

A,y 18, 25, 56, 63, 94, A1 133, 134, 135, 136, 137, 138
101, 132, 139, 170, 177

As 26, 29, 32, 35, 38 Asg 140, 143, 146, 149, 152

Ag 6,7,9,10,12, 13, 15, Agn 120, 121, 123, 124, 126, 127,
16, 27, 28, 30, 31, 33, 129, 130, 141, 142, 144, 145,
34, 36, 37 147, 148, 150, 151

Az 39,40, 41, 42 Ago 153, 154, 155, 156

Asg 43, 46, 49, 52, 55 Ao 157, 160, 163, 166, 169

Ay 57, 58, 59, 60, 61, 62 Asy 171,172,173, 174, 175, 176

A1 64, 67,70, 73,76 Asgs 178, 181, 184, 187, 190

An 44, 45, 47, 48, 50, 51, Asg 158, 159, 161, 162, 164, 165,
53, 54, 65, 66, 68, 69, 167, 168, 179, 180, 182, 183,
71,72,74,75 185, 186, 188, 189

A1 77,778,719, 80 Aoz 191, 192, 193, 194

Ass 81, 84, 87, 90, 93 Ass 195, 197, 198, 200

Ay 95, 96, 97, 98, 99, 100 Asg 196, 199

Ags 102, 105, 108, 111, 114

3.6. 200-bar planar truss

To demonstrate the efficiency and reliability of the FNN, the last numerical example con-
sidered is a plane truss with 200 members. They are made of material with density and elastic
modulus of 7833.413 kg/m?® and 206842.719 MPa, respectively. The geometric information,
finite element representation, and boundary conditions are depicted in Fig. 25] The continuous
design variables, with the lower bound to be 0.645 cm?, are cross-sectional areas categorized
into 29 groups, as shown in Table The stress of members is limited in interval [-68.948;
68.948] MPa. The system is subjected to three loading cases: 1) a horizontal load of 4.448 kN
in the positive direction of the x-axis is applied to nodes 1, 6, 15, 20, 29, 34, 43, 48,57, 62 and
71; 2) a vertical load of 44.482 kN in the negative direction of the y-axis is imposed on nodes
1,2,3,4,5,6,8,10, 12, 14, 15, 16, 17, 18, 19, 20,22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38,
40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73,

49



588

589

590

592

593

594

595

596

597

598

599

74 and 75; 3) both cases (1) and (2) acting together. In this problem, the maximum number of

epochs allowed for the training process was 5000.

Table 22
Optimization results obtained for the 200-bar planar truss.

A; (cm?) Lee Kaveh  Lamberti Degertekin Mai [60] Pierezan This study

‘ 1721 77 1881 1891 DUL  PINEEN 190} DE FNN
Ay 0.806 0.665 0.948 0.942 0.761 0.665 0.897 0.813 0.645
Ay 6.555 5.923 6.065 6.071 6.394 6.110 6.039 6.013 6.084
As 0.690 0.774 0.645 0.645 0.735 0.748 0.645 0.690 0.665
A, 0.710 0.652 0.645 0.652 1.497 0.716 0.645 0.645 0.665
As 12.497 12.039 12.516 12.523 12.632 12.581 12.490 12.458 12.535
Ag 1.735 1.826 1.910 1.910 1.877 1.923 1.877 1.845 1.852
Az 0.671 0.645 0.645 0.645 1.045 0.794 0.645 0.658 0.652
As 19.181 19.148 20.026 20.135 20.335 20.226 19.884 19.806 20.206
Ay 0.845 0.645 0.645 0.645 0.890 0.671 0.645 1.587 0.658
Ajp 26.987 25.458 26.477 26.923 26.987 26.652 26.335 26.258 26.658
Ay 2.561 2.413 2.600 2.587 2.477 2716 2.561 2.890 2.639
Ay 2.852 2.903 1.232 1.168 1.368 0.684 1.910 1.174 0.658
Ais 33.464 32.000 35.019 34.987 35.142 35.219 34.742 34.781 35.110
Ay 1.232 6.929 0.645 0.645 0.819 0.684 0.645 0.748 0.690
Ais 40.264 38.574 41471 41.432 41.606 41.658 41.194 41.232 41.568
A 4.510 5.071 3.697 3.684 3.432 3.555 4.084 3.839 3.523
Aiq 0.748 4.755 0.858 1.006 1.387 0.794 1.187 1.329 0.897
Asg 50.090 47.619 51.432 51.342 51.684 51.593 51.871 51.406 51.445
Ay 0.645 4.303 0.645 0.645 0.923 0.897 0.645 1.116 0.652
Aso 56.955 53.548 57.884 57.793 58.045 57.968 58.323 57.858 57.897
Ay 4.510 7.723 4.548 4.645 4.548 4.697 4.813 5.090 4.594
Ago 10.039 6.452 2.710 3.084 1.581 1.542 0.845 1.329 1.490
Ags 70.845 69.845 70.090 70.303 69.852 70.052 70.393 70.368 69.819
Agy 0.852 0.645 0.645 0.645 0.819 1.084 0.645 0.742 0.645
Ags 78.381 75.471 76.523 76.755 76.490 76.490 76.845 76.819 76.271
Agg 10.561 8.955 6.671 6.968 5.535 6.323 5.568 6.006 5.929
Aoz 32.277 31.948 43.110 41.690 44.477 43.077 44.626 44.897 44.232
Ass 60.355 56.774 69.748 69.671 72.058 70.400 70.755 70.090 70.987
Asg 97.368 94.613 §89.290 89.819 87.761 88.819 88.219 88.806 88.084

Whest (kg) 11542.610 11410.796 11541.944 11561.230 11588.334 11537.798 11544.007 11595.009 11500.491

CV E, a0 (%) 3.69 9.97 0.071 None None None None None

None

Table [6] and Fig. [26] illustrate the optimal hyper-parameters found after 30 training times.
Additionally, the optimum results with respect to the optimal network, which include the
weight, design variables, constraints, and statistics, are reported in Tables @] and@ It is inter-
esting that in this structure, the optimum weights obtained by the other studies (DE: 11595.009
kg; Pierezan [90]: 11544.007 kg; Degertekin [89]]: 11561.230 kg; DUL [60]: 11588.334 kg;
and PINEFEN [60]: 11537.798 kg) are much larger than the proposed approach (11500.491 kg).
Clearly, our framework saves over 30 kg compared to the second-best approach PINEFN. From
the data in Table it can easily be seen that the range of confidence interval (11501.959 kg
to 11502.104 kg) changes for narrow and close to the worst (11503.045 kg), mean (11502.031
kg), and best (11500.491 kg) weights with the small Std (0.333 kg). More importantly, all
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constraint values found by FNN are very close and satisfy the allowable stresses. Meanwhile,
the objective and constraints found by DE have a large standard deviation and the maximum
values are still quite far from our result. And clearly, this work gives the best result in terms
of both the constraints and optimum weight. Although the DUL, PINEFN, and FNN mod-
els based on the gradient descent method all utilize the neural network as the backbone, our
paradigm outperforms the other two algorithms. This can easily be explained by the fact that
the gradient-based approaches are very sensitive to the choice of the starting point. And its
position is influenced heavily by the hyper-parameters of the network. Therein, the DUL and
PINEFN models fix all hyper-parameters of the network during the whole training process.
Hence, both algorithms may become trapped in local optima without tuning hyper-parameters.
Meanwhile, our framework has completely overcome this drawback by using BO for auto-
matic tuning of hyper-parameters of the network. And this process is the automatic selection of
the starting point, when changing the hyper-parameters lead to change the position of starting
point. Therefore, the FNN is capable of effectively handling design problems that contain local
minima, as well as improving accuracy. The loss convergence histories of the DE, PINEFN,
and FNN are depicted in Fig. Clearly, the learning curve of the proposed method con-
verges much more rapidly than those of the other algorithms. It achieves the optimal weight
around 4000 analyses, while the DE and PINEFN demand 35000 and 4500, respectively. Con-
sequently, this once again demonstrates the efficiency of the automatic hyper-parameter tuning

of the DNN for solving structural optimization problems.

Table 23
Statistics of the constraints and weight for the 200-bar planar truss.
) DE FNN
Metric
o112 MPa) 0165 (MPa) W(kg) 0200 MPa) 0121 (MPa) W (kg)
Min -68.948 1.481 11595.010 -68.948 68.915 11500.491
Max -7.472 60.840 12051.035 -68.946 68.948 11503.045
Mean -17.827 5218 11718.071 -68.947 68.939 11502.031
Std 1.898 1.956 19.851 0.000 0.005 0.333
95% CIU -18.506 4518 11710.968 -68.947 68.940 11502.104
95% CIL -17.148 5917 11725.175 -68.947 68.938 11501.959

51



4x6.096 m
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9.144 m

Fig. 25. A 200-bar planar truss structure.
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Fig. 26. Convergence history of the HPO using BO for the 200-bar planar truss.

4. Discussion

From Table it is easily noticeable that the FNN requires significantly fewer structural
analyses per run compared to the DE across all problems. More concretely, it takes only 1000
and 5000 analyses in numerical examples 1-5 and 6, respectively. In contrast, the DE con-
verges much more slowly, requiring 6 to 28 times the average number of structural analyses
(Avg) compared to our model. In addition, compared to the neural network-based approaches,
this study not only achieves better optimal weights but also converges faster than the DUL
and PINEFN, especially in large-scale problems. Clearly, the hyper-parameters tuning process
provides a good starting point which helps to improve performance. Furthermore, this is par-
tially due to the self-normalized training data, which also increase the convergence rate for the
training process. In terms of the computational time, the efficiency of the DE method performs
better than the FNN, but only for optimization problems with few design variables (ie less than

10), such as those given in numerical examples 1, 3, and 5. When the number of design vari-
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Fig. 27. Weight convergence histories of the 200-bar planar truss using the FNN and other
works.

ables and the complexity of structures increase, the computational cost of the DE is higher than
the FNN for the other structures. Specifically, the total times of the FNN (357.681 s) is less than
the DE (410.076 s) for the 17-bar planar truss. For the 72-bar space truss, it takes only 545.927
s and 1116.490 s to gain optimal solutions, while the DE requires 932.225 s and 2144.720 s
for the first and second cases, respectively. Meanwhile, its computational cost (4049.605 s) is
reduced by more than three times compared to the DE (15857.088 s) for the 200-bar planar
truss with the largest design variable (29). This can be easily explained by the fact that the DE
is a population-based optimization algorithm. Hence, it requires a larger number of function
evaluations to effectively explore the search space for high-dimensional problems [91]]. And
this is clearly shown in the examples 2, 4, and 6. Contrary to the DE algorithm, our framework
relies on the gradient based optimization strategy using automatic differentiation tools to evalu-
ate the sensitivity. Thus this demonstrated the cost-effectiveness of the FNN for the large-scale

and complex structures compared with the conventional algorithms.
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Table 24
Efficiency of the different algorithms.

No. of No. of No. of DE FNN

Example elements dofs design Total Avg Whest Total Avg West
variables times (s) (kg) times (s) (kg)

10-bar planar truss (Case 1) 10 3 10 206.145 9410  2295.580 239.261 1000  2295.655
10-bar planar truss (Case 2) 214245 11214  2121.435 256.230 1000 2121.507
17-bar planar truss 17 14 17 410.076 28563  1171.133 357.681 1000 1171.129
25-bar space truss 25 18 8 294.685 7495 247.282 354.144 1000 247.321
72-bar space truss (Case 1) 79 48 16 932.225 15689 167.669 545.927 1000 167.676
72-bar space truss (Case 2) 2144.720 22691 165.708 1116.490 1000 165.099
120-bar dome truss 120 111 7 781.164 6793 14741.630 854.994 1000 14741.589
200-bar planar truss 200 150 29 15857.088 49325 11595.009 4049.605 5000 11500.491
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In terms of the accuracy, it is easily observed that the optimum weights found by the FNN
are a good agreement with the DE, DUL, and PINEFN for the examples 1-5 with very small
deviation. For the 200-bar planar truss, our approach (11500.491 kg) achieves the lightest
weight structure saving from 37 to 95 kg, compared to the alternative methods (DE: 11595.009
kg; DUL: 11588.334 kg; PINEFN: 11537.007 kg) while satisfying all constraints. It means
that these existing methods converge towards a local optimum instead of the global optimum.
Clearly, their performance is influenced by the choice of algorithm parameters. More con-
cretely, the DE, also known as the gradient-free algorithm, is sensitive to control parameters,
such as population size, mutation factor, and crossover rate, when the dimensionality of the
problem increases. And its ability to balance exploration and exploitation to locate the opti-
mal solution is closely related to parameter tuning. This is one major drawback that leads to
inefficiency and more time-consuming optimization processes [91]. Meanwhile, the DUL and
PINEFN based on the gradient of the neural network may become trapped in a local minimum
due to the position of the initial starting point, which depends on the hyper-parameters. In
these two approaches, user experience was applied to select them. Hence, their accuracy is
strongly dependent on prior knowledge and experience. For our framework, its most outstand-
ing characteristic is that BO allows for the automatic tuning of the network’s hyper-parameters.
Therefore, FNN is capable of effectively handling large-scale problems, improving in terms
of speed of convergence as well as escaping local minima. In addition, it yields a simple and

easily applied model due to automatically calculating sensitivity.

5. Conclusions

In this article, an efficient FNN-based framework was successfully developed for the de-
sign optimization of truss structures. In order to achieve this goal, a deep neural network with
automatic hyper-parameters tuning using BO was constructed to guide the learning process by
minimizing the loss function, which was designed based on the weight and constraint func-
tions of the structure with supporting FM. And the optimum weight of the structure was found
immediately at the training end corresponding to the minimum loss. The simplicity, effec-

tiveness, and reliability of the proposed approach were demonstrated numerical examples for
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the size optimization of truss structures. The obtained results revealed that our paradigm out-
performs previously released works in solution quality, convergence speed, and computational
efficiency for the large-scale problem. One outstanding characteristic is that the connectivity
matrix was considered as the self-normalized and unlabeled training data without using any
structural analyses as well as sampling techniques. Hence, its learning possibility only relies
upon the connectivity information, which are known as the input data. In addition, a poten-
tially more interesting point is that it could automatically tune hyper-parameters to avoid being
trapped in a local optimum. On the other hand, the sensitivity calculation became easy and
simple to determine by automatic differentiation tools. Owing to these aforementioned excel-
lent properties, FNN shows great potential as an alternative approach for addressing complex
issues in structural optimization.

Despite its advantages, the FNN may face the computing challenges that have yet to be
resolved. Firstly, this model only can solve the sizing optimization of truss structures. There-
fore, future studies can extend to the size and shape optimization, topology optimization, and
reliability-based design optimization problems. Next, it cannot handle scenarios of unforeseen
conditions, such as loads, material properties, constraints, and so on, while still accurately
predicting the optimal weight without conducting the optimization again. To overcome this
challenge, the integration of FNN and transfer learning offers a promising approach for gener-
alizing to new conditions, enabling the prediction of optimal weight without requiring model
re-training for future developments. In addition, this work only considers the design optimiza-
tion of structures with linear behavior. However, in reality, all structures exhibit nonlinear
responses in some way, so these need to be considered in the optimization process. And this
is one of the future directions to fully understand real structural performance. And finally, a
multi-fidelity model that integrates the FNN with high-fidelity data obtained from experiments

is a promising approach for addressing optimization challenges in real-life scenarios.
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Appendix A. Gaussian process

LHS is employed to generate p initial combinations of hyper-parameters in the design space.
And then the corresponding minimum loss function values (L,;,) are found by training the
networks with respect to each combination of hyper-parameters (8). Based on the obtained
training sample set {,Blzp, Lmin(l:p)}’ a GP-based surrogate model is constructed to approx-
imate the objective function for tuning hyper-parameters. The samples follow a multivariate

Gaussian distribution £in(1.5) ~ N (0, K), where the kernel matrix K is expressed as follows

k(B1,B1) -+ k(B1,By)

K= : (A.1)

k(:BpnBl) ek (:B}%ﬂp)

in which k is the Matérn kernel function. Let ,Cmin(pH) denote the minimum loss function value
achieved by the network with respect to the next combination of hyper-parameters 3,,11. When

Emin(l:p) and Emin(pH) are jointly Gaussian, and they are given by

58



721

722

723

724

725

726

727

728

729

730

731

732

733

734

ﬁmin : K k
SECH VS Y ! , (A.2)

‘Cmin(p+1) k{ k(ﬁerl? IBP+1)
with

ki=1k(Br, Bpr1) k(B2 Bps1) -+ k(Bp Bps1) | - (A3)

Based on Bayes’ rule, the posterior probability distribution Ly,in(,+1) at a next sample 3,

can be expressed as

P (Emin(p+1)|ﬁp+17 IBI:pa ‘Cmin(lzp)) ~ N (/'L (ﬂp—i—l) 702 (ﬁp—i—l)) ) (A4)

where 02(.) and p(.) are the covariance function and posterior mean, respectively. They are

given by
0? (Byi1) = k (Byi1, Byi1) — K[ [K+0°1 'Ky,
H (ﬂp-f-l) = k? [K + JZI]_l‘Cmin(lzp)-

(AS)

At each iteration of BO, the acquisition function, also known as the infill strategy, is used
to guide the selection of the next set of the hyper-parameters to evaluate. It plays a central role
in the tuning process. There are three most widely used acquisition functions, namely LCB, PI,

El. And their mathematical expressions are reformulated as follows

LCB(B) =1 (B) = Ao (B). (A6)

PI (,3) = > (,3 , (A.7)
EI(B) = (1 (B) — Luin (BT)) @ (&) +0(B) 9 (€), (A.8)

where
e 1B) = Luin (BY) (A9)

in which A > 0 is a trade-off parameter between exploration and exploitation; 81 represents
the current best hyper-parameters obtained from the surrogate model L,,;,,; ®(.) and ¢(.) are

the standard normal cumulative distribution and probability density functions, respectively.
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