
A force neural network framework for structural optimization1

Dai D. Maia,1, Si T. Doa,b,2, Seunghye Leec,3, Hau T. Maid,∗
2

aFaculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh3

City, Viet Nam4
bFaculty of Electrical-Mechanical, FPT Polytechnic, FPT University, Ho Chi Minh City, Viet Nam5

cDeep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul6

05006, Republic of Korea7
dFaculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam8

Abstract9
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size optimization of truss structures as an operator learning problem. A Deep Neural Net-11

work (DNN) is designed to directly map the connectivity information of truss members to12

the corresponding design variables. Therein, the entire unlabeled training data contains only13

the connectivity information of members, without any structural responses, weights, or cross-14

sectional areas. By integrating Force Method (FM), our framework embeds the optimal design15

problem represented by the objective and constraint functions in the loss function to guide the16

training process. And it guarantees that the generated solution is consistent with the underlying17

physical principles. In addition to enhance efficiency in finding the optimum structural weight,18

Bayesian Optimization (BO) is applied for automatic hyper-parameters tuning instead of the19

trial and error method. As soon as the training phase ends, the optimal weight of truss struc-20

tures is found without using any other numerical methods. Several numerical examples are21

investigated to demonstrate the effectiveness and applicability of the FNN for the optimization22

of truss structures. The obtained results indicate that it not only be simple to perform but also23

overcomes the local optimal problem and reduces the computational cost in high-dimensional24

problems.25
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1. Introduction28

In the past decades, the optimization of truss structures has received widespread attention29

from many scholars [1, 2]. Generally, most current work relies on the same fundamental princi-30

ple, as illustrated in Fig. 1a. Therein, numerical simulations are performed in each iteration of31

the optimization algorithm to estimate the structural responses. And these optimization algo-32

rithms can be grouped into three primary categories: Optimality Criteria (OC), gradient-based,33

and gradient-free algorithms. Firstly, the OC method employs heuristic updates based on op-34

timality conditions for searching the optimal solution. And it has been successfully applied to35

handle optimization problems. For instance, Khot and Berke [3] introduced an efficient algo-36

rithm based on the OC for the sizing of structures. Besides, Bendsøe et al. [4] developed a dis-37

placements based OC method for truss topology design. Saka [5] applied the OC to design the38

shape of roof trusses. Although using the OC method had many benefits, the obtained results39

were sensitive to the initial starting point and the chosen parameters. Furthermore, it encoun-40

tered the challenges in handling multiple constraints and local minima [6]. Next, the second41

baseline method is a gradient-based algorithm that relies on derivative information to guide42

the search process. For example, Gu et al. [7] developed a displacement-based optimization43

method to find the minimum weight of truss structures. A gradient-Hessian matrix-based algo-44

rithm was presented by Liu et al. [8] for minimizing the weight of truss structures. Addition-45

ally, Schmit and Farshi [9] suggested a succession of linear programs for sizing optimization46

of structures. To reduce computational costs, Saka and Ulker [10] developed a coupling mech-47

anism based on nonlinear analysis technique and optimality criterion. Despite its remarkable48

success in the structural optimization, this approach still has limitations related to local optima49

and the lack of gradient information [11]. To circumvent the above drawbacks, gradient-free50

algorithms have received much attention for their ability to find near-optimal solutions. Storn51

and Price [12] firstly introduced a Differential Evolution (DE) algorithm for minimizing pos-52

sibly nonlinear and non-differentiable continuous space functions. A genetic algorithm based53

on principles of biological evolution for solving optimization problems was suggested by Hol-54

land [13]. More recently, Lieu et al. [14] proposed a firefly algorithm for the optimization of55

truss structures. In addition, Rao et al. [15] presented teaching-learning-based optimization for56
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solving mechanical design problems, while particle swarm optimization optimizing nonlinear57

functions was released by Kennedy and Eberhart [16]. Up to now, a variety of metaheuristic58

algorithms have been successfully developed for optimization [17–24]. However, these algo-59

rithms require a large number of structural analyses, become computationally challenging for60

large-scale problems, and have relatively slow convergence speeds [25].61

In recent years, Machine Learning (ML) has been proven to be successful in a range of62

applications thanks to its ability to tackle complex problems lacking closed-form expressions.63

And the field of computational mechanics is no exception [26–35]. To the best of our knowl-64

edge, the applications of ML to structural optimization problems can be grouped into two main65

categories. The first one is a data-driven approach where the ML models are trained using pre-66

existing data to predict structural responses, optimize designs, or approximate solutions without67

relying on traditional physics-based simulations. Fig. 1b provides a comprehensive overview68

of the purely data-driven framework. Indeed, this methodology is not a new one and has been69

introduced since the 1990s. Specifically, Hajela and Berke [36] were among the pioneers in70

using Neural Networks (NNs) to replace structural analysis steps in the optimization process.71

And then a nonlinear neural dynamics model for optimization of structures was released by72

Adeli and Park [37]. Additionally, Ramasamy and Rajasekaran [38] introduced a combination73

between the genetic algorithm and NN for the design of industrial roofs. Recently, to reduce74

computational costs, Mai et al. [39] developed an integrated model combining the NN and DE75

for the design optimization of geometrically nonlinear structures. Besides, Li et al. [40] pro-76

posed a non-iterative topology optimizer using ML for heat conduction structure design. The77

same idea was adopted by White [41] and Chi [42] to replace the finite element analysis for the78

topology optimization. Although it has achieved certain success in optimization applications79

[43–45], this strategy also faces several challenges as follows:80

(i) The data-driven model is derived from the input-output relationship without relying on81

precise physical assumptions. Therefore, it requires a larger number of training data82

to achieve the desired accuracy. Furthermore, computational simulations, such as finite83

element analysis, are used to collect the available true data. Precisely for this reason, it84

poses a significant challenge in determining the quality and size of the training data [46].85
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(ii) In other words, the NN was trained to minimize the distinction between the provided data86

and predicted results as a loss function. And the physical laws and governing equations87

of structures were not directly considered in the training process. As a result, the model88

fails to ensure the physical laws and lacks the generality needed for addressing various89

optimization problems [47].90

(iii) Moreover, an important aspect to highlight here is the choice of hyper-parameters. Many91

studies have emphasized that the obtained results heavily depend on the selected net-92

work architecture [46, 48]. Consequently, it often poses a challenge for tuning hyper-93

parameters without relying on user experience whilst still ensuring accuracy.94
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Fig. 1. Process of structural optimization. (a) Conventional approach including optimizer algo-
rithm and structural analysis. (b) Purely data-driven model combines the optimizer algorithm
and neural network.

In contrast, the second approach is Physics-Informed Neural Networks (PINNs), where95

physical laws represented by Partial Differential Equations (PDEs) were embedded in the loss96

function to guide the learning process. It has been proven to be successful in structural analysis97
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[49, 50] and solving PDEs [34, 35]. In recent literature, several scholars have successfully ap-98

plied this approach for the structural optimization. Accordingly, He et al. [51] and Jeong et al.99

[52] were among the first authors to develop a approach for integrating PINNs-based simulation100

technique into classical topology optimization. In addition, two PINNs are designed to indicate101

optimized structures by Jeong et al. [53]. In recent times, Singh [54] introduced a dual PINNs102

for topology optimization. In the aforementioned studies, the networks are employed to replace103

structural and sensitivity analyses, as shown in Fig. 2a. Despite their success, this strategy also104

faces many challenges. First of all, instead of directly solving algebraic equations to estimate105

the structural responses, the network was trained to solve the energy minimization problem,106

and this inevitably leads to a large computational cost compared to classical approaches. On107

the other hand, the training data changes in each iteration of the optimization process. This may108

result in unstable numerical outcomes due to the changing potential energy landscape, while109

the hyper-parameters of the network remain fixed. Furthermore, it leads to inefficiencies in op-110

timization performance in terms of both accuracy and computational cost for the dual PINNs.111

Motivated by this fact, our recent work proposes a Physics-Informed Neural Energy-Force Net-112

work (PINEFN) to solve the design optimization of truss structures. In this approach, a single113

neural network is utilized to minimize the loss function, which is derived from the weight,114

complementary energy, and constraint equations to determine the optimal solution. Despite its115

success in estimating the optimal weight, we observed that the training process converged only116

when the complementary energy of the structure was always positive. In other cases, the model117

did not converge to the optimal solution. And this can be interpreted as due to the complexity118

of the loss function when the network was designed to perform optimization of both the com-119

plementary energy and weight at the same time. According that core idea, the first term in the120

loss function was the Euclidean norm of the complementary energy, while the second and third121

terms related to the violated constraints and weight, respectively. It should be noted that the122

values of these terms as well as the loss function were always positive in the whole training123

process. Hence, the loss landscape becomes less smooth and converges to an unfavorable local124

minimum [55] when the minimum complementary energy of the structure is negative. Nev-125

ertheless, in aforementioned works, the choice of hyper-parameters is still a challenging issue126
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due to the complexity of the loss function.127
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Fig. 2. Schematic diagram of structural optimization. (a) PINNs is used to replace FEM to ob-
tain the structural responses. (b) Integrating structural analysis into neural network framework.

Driven by the challenges mentioned above, this study aims to introduce the force neural net-128

work framework for the size optimization of truss structures, as illustrated in Fig. 2b. Therein,129

the DNN is designed to directly estimate the optimal weight design. The trainable parameters,130

including the weights and biases of the network, are considered as design variables instead131

of the cross-sectional areas of truss members. The unlabeled training data only contains the132

connectivity matrix of truss elements. Meanwhile, the unknown cross-sectional areas are de-133

rived as output values of the network, which are expressed by the trainable parameters and134

the connectivity information. Based on the predicted cross-sectional areas, the weight and the135

corresponding constraint functions found by supporting FM are embed in the loss function of136

the network to guide the training process. Additionally, the BO framework is applied to auto-137

matically tune hyper-parameters of the network. When the training process ends, the optimum138

design is immediately indicated without using any additional algorithms. Several benchmarks139

are investigated to evaluate the reliability and efficiency of the proposed model. The obtained140
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results of numerical examples are compared against several well-known recently introduced141

algorithms.142

The main contributions of this study are as follows:143

• Force neural network framework equipped with automatic sensitivity analysis capabil-144

ities offers simplicity, ease of use, and robustness for solving the optimization of truss145

structures under multiple constraints.146

• Connectivity matrix of truss members is considered as a self-normalized and unlabeled147

training data without including any structural responses. Hence, it can be easily col-148

lected from the geometric information without using any numerical simulations or sam-149

pling techniques. In addition, the self-normalized data ensures more stable and efficient150

parameter updates during training.151

• Automatic tuning of hyper-parameters using Bayesian optimization helps to escape the152

local optima as well as enhances reliability in design optimization.153

• Our approach yields high accuracy, converges faster, and saves computational cost in154

high-dimensional problems compared to conventional optimization algorithms using fi-155

nite element analysis.156

The remainder of this study is organized as follows. In Section 2, a detailed introduction157

to the force neural network framework is provided. Therein, Section 2.1 presents the training158

data. While Section 2.2 provides the DNN architecture and loss function, Section 2.3 shows159

auto-tuning hyper-parameters. In Section 3, several case studies are conducted to demonstrate160

the accuracy and effectiveness of our model. Next, the efficiency of the proposed approach is161

discussed in Section 4. Finally, crucial conclusions are summarized in Section 5 of the article.162
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2. Force neural network framework163

In this section, the FNN, as shown in Fig. 3, is first introduced to directly perform opti-164

mization of truss structures. Therein, the trainable parameters of the network θθθ are treated as165

new design variables instead of the cross-sectional areas. The entire training data contains only166

the connectivity matrix Cs, which is unlabeled, self-normalized, and without any structural re-167

sponses. And each row of this matrix Cs (i, :) represents a sample of the training data which is168

known as an input vector to the neural network. The predicted cross-sectional areas Â, which169

are referred to as the output network, are represented as a function of Cs and θθθ through the170

mapping of the DNN. According to this scheme, the objective and constraints corresponding171

to the predicted output values Â, as determined by FM, are embedded into the loss function172

to guide the network’s training process in searching for the optimal structure. To achieve this173

goal, the network is trained by adjusting the parameters to minimize the loss function of the174

model. The training phase becomes easy and simple to implement with automatic sensitivity175

analysis capabilities. Additionally, to enhance the computational efficiency and reliability of176

the model, the BO is applied to automatically tune hyper-parameters of the network. In general,177

our framework comprises three fundamental components: training data, DNN architecture, and178

auto-tuning hyper-parameters. The following subsections provide a detailed description of179

them.180

2.1. Training data181

Unlike previous work based on data driven approaches, our unlabeled training data only182

contains the input data without corresponding output values. More concretely, the connectivity183

matrix of truss elements Cs(∈ Zel×n) is set up as the entire training data, which does not184

include the responses of the structure, such as stress, strain, displacement, force members,185

cross-sectional areas, and so on. Here, el is the number of elements, while n denotes the186

number of joints. And the value of the kth row and pth column of the connectivity matrix Cs,187

which shows connecting the nodes i and j (i < j) of the kth member, is defined as follows188

Cs(k,p) =


1 for p = i,

−1 for p = j,
0 otherwise.

(1)
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And it is evident that the connectivity matrix can be obtained easily from the structure’s189

geometric information without requiring numerical simulations or sampling techniques. It is190

worth mentioning that from Eq. 1, the self-normalized training data is the connectivity matrix191

whose entries are -1, 0 or 1. And this brings significant benefits to the efficiency of model train-192

ing. Firstly, the normalized data helps reduce vanishing or exploding gradient issues and allows193

for faster convergence during training. Besides, all self-normalized inputs are given the same194

relevance or scale, ensuring that each feature contributes equally to making predictions. This195

reduces instability during forward and backward propagations as well as improves the accuracy196

and generalization capability of the network. Finally, the self-normalized inputs can reduce the197

network’s sensitivity to the hyper-parameters [56, 57]. Furthermore, the cross-sectional areas,198

which are not included in the training data and are unknown quantities, are designed as the199

network’s output. The important thing that must be highlighted here is that the objective and200

constraints of the structure are determined based on the predicted values of the network with201

supporting FM.202

2.2. Deep Neural network203

One of the machine learning models is the DNN, which is a set mathematical relationship204

between inputs and outputs developed during a training phase to replicate the way human brain205

operations work. A fully connected DNN with (L + 1) layers, as depicted in Fig. 4, is con-206

structed to parameterize the cross-sectional areas Â. It comprises of one input layer with n207

input neurons and one output layer with one output neuron. Between these two layers, there208

are (L − 1) hidden layers, and the choice of the number of hidden neurons and hidden layers209

depends on the complexity of specific problems. In this study, the BO algorithm is applied to210

automatically optimize them. Note that all units of the current layer are linked to every neuron211

in the next layer via the training parameters θθθ, including the weights and biases. And these212

initial parameter values are randomly generated using the truncated normal distribution in the213

range [-1, 1]. Accordingly, the predicted cross-sectional area of the ith element Âi is expressed214

as follows215
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input layer : h0 = Cs (i, :) ∈ Rn,

hidden layers: hl = f1

(
WlTh(l−1) + bl

)
∈ Rml , for 1 ≤ l < L,

output layer : hL = f2

(
WLT

h(L−1) + bL
)
= Âi ∈ R,

(2)

where hl(.) is output vector of the lth layer; ml is the number of units in the lth hidden layer;216

W(.) and b(.) denote the weights and biases, respectively; f(.) is the activation function, which217

enables the network to learn the complex relationship between the output and input. Several218

activation functions, such as ReLU, LeakyReLU, Tanh, Sigmoid, Linear, Softmax, and so on,219

are widely used to solve various problems. Note that this study utilized the Sofmax function220

for the output layer, whilst the activation function of the hidden layers is identified through BO,221

which will be explained in detail in the next subsection.222

From Eq. 2, it should be noted that the cross-sectional areas Â (Cs, θθθ) are the function of223

the training parameters and the connectivity matrix. Therefore, the weights and biases of the224

network are now new design variables of the sizing optimization of truss structures, instead225

of the cross-sectional areas of truss members as in conventional approaches. In this study, the226

weight of the structure is minimized subject to the displacement and stress constraints. The227

optimal design problem can be formulated as follows228

Minimize W
(
Â (Cs, θθθ)

)
=

el∑
i=1

ρiLiÂi (Cs(i, :), θθθ) , i = 1, 2, ..., el ,

subjected to δmin ≤ δj (Cs, θθθ) ≤ δmax , j = 1, 2, ..., nd ,

σmin ≤ σi (Cs, θθθ) ≤ σmax , i = 1, 2, ..., el ,

σb
k ≤ σk (Cs, θθθ) ≤ 0 , k = 1, 2, ..., nb,

Alow
i ≤ Âi (Cs(i, :), θθθ) ≤ Aup

i ,

(3)

where W (.) is the weight of the whole truss structure; Â denotes the predicted cross-sectional229

area vector; Âi is the predicted cross-sectional area of the ith member; ρi and Li are the material230

density and length of the ith member, respectively; el is the total number of bars in the structure;231

nd refers to the number of displacement constraints; nb denotes the number of compression232

elements; δ and σ are the nodal deflection and the stress, respectively; σb
k is the allowable233

buckling stress in the kth member when it is in compression; Alow
i and Aup

i are the lower bound234

11



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

hj
(L-1) 

 

 
 

 

 

 

(L-1)-th hidden layer 

h(L-2) h(L-1) 

Â C
s
 

Input layer 0  

hidden layer 1  hidden layer (L-1)    

output layer L   

 Fully-connected neural network architecture 

j-th neuron 

 f1 

bj
(L-1) 

 

Fig. 4. A fully-connected deep neural network architecture.

and the upper bound of the ith cross-sectional area, respectively.235

With respect to the predicted cross-sectional areas of the network, the weight of the truss236

structure can be easily obtained, while the structural responses, including displacements and237

stresses, are found by the FM. Accordingly, the objective and constraint values are embed238

into a penalty function, also known as the loss function of the network, to guide the learning239

process. Meanwhile, the constrained optimization problem is converted into an unconstrained240

optimization one. And Eq. 3 is rewritten as follows241

Minimize L (θθθ) =
(
1 + ε1c

(
Â (Cs, θθθ)

))ε2
W

(
Â (Cs, θθθ)

)
, (4)
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with242

c
(
Â (Cs, θθθ)

)
=

nc∑
j=1

max
(
0, gj

(
Â (Cs, θθθ)

))
, (5)

in which c is the sum of the violated constraints; nc is the number of constraints in the problem;243

gj represents the jth constraint function; ε1 and ε2 are parameters which control the exploration244

and exploitation factors of the design domain. Herein, the parameter ε2 is set equal to 1, as sug-245

gested by Hasancebi [58] and Sonmez [59]. The other parameter ε1 adjusts itself dynamically246

according to the feedback from the previous iteration and is defined as follows247

ε
(t)
1 =

 (1/κ) ε
(t−1)
1 if L(t−1) feasible,

κ ε
(t−1)
1 if L(t−1) infeasible,

(6)

where ε
(t)
1 represents the penalty coefficient at the tth iteration, with ε

(1)
1 initially set at 1. The248

learning parameter for ε(t)1 , denoted as κ is determined by249

κ = 1 +
1

nc + 1
> 1.01. (7)

It is worthwhile to note that the constraints obtained by FM are consistent with the under-250

lying physical principles and makes the total complementary energy minimum in each itera-251

tions. This is a significant difference between the proposed approach and our previously work252

PINEFN [60]. In addition, note that the output layer uses the Softmax function to limit the out-253

put range between 0 and 1. Based on these output network, all predicted cross-sectional areas254

are renormalized into the design space [Alow
i , Aup

i ]. Thus, the constraints related to the limita-255

tions of the design variables are removed in Eq. 4. This is meaning that the constraints (gj)256

only include the displacements and stresses, which satisfy both equilibrium and compatibility257

equations. To achieve this goal, the training phase, also known as structural optimization, aims258

to minimize the loss function in order to determine the network’s optimal parameters instead259

of the cross-sectional areas.260

θθθ∗ = argmin
θθθ

(L (θθθ) ) . (8)

In order to achieve the goal, Adam optimizer, which is a well-known gradient descent261
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algorithm, is utilized in this study to perform the training task. Therefore, the derivatives of262

the loss function must be determined to adjust the training parameters. By applying the chain263

rule to Eq. 4, the sensitivity of the loss function is expressed as follows264

∂L
∂θi

=
el∑

j=1

[
ε2(1 + ε1c)

ε2−1W
∂c

∂Âj

+ (1 + ε1c)
ε2 ∂W

∂Âj

]
∂Âj

∂θi
. (9)

From Eq. 9, it can be observed that the second term ∂Âj

∂θi
is calculated automatically by the265

backpropagation algorithm which is integrated into the network. Therein, the remaining term266

∂W

∂Âj
can be easily determined using the formulation following267

∂W

∂Âj

= ρjLj, (10)

where Lj and ρj are the length and material density of the jth truss member, respectively.268

And the gradient of term ∂c

∂Âj
is calculated using Just Another eXtensor (JAX) [61] which is269

a tool for automatic differentiation developed by Google. It has been successfully applied in270

computational mechanics fields [62, 63]. Consequently, the sensitivity of the loss function with271

respect to the training parameters is entirely defined. When the trainable parameters at iteration272

(t+ 1) of the training process are adjusted as follows273

θθθt+1 = θθθt − η
mt+1

√
1− β

(t+1)
2(

1− β
(t+1)
1

)(
√
vt+1 + ξ

√
1− β

(t+1)
2

) , (11)

in which mt+1 and vt+1 are given by274

mt+1 = β1mt + (1− β1) .∇L (θθθt) ,

vt+1 = β2vt + (1− β2) .∇L (θθθt) ,
(12)

where β1 and β2 are the exponential decay rates which are used to control the first mt+1 and275

second vt+1 raw moment vectors; η and ξ denote the learning rate and constant added to ensure276

numerical stability, respectively. In this work, the default settings of the Adam, as suggested by277

Kingma and Ba [64], were used to train the model. For more information, the readers can refer278

to [64]. Once the training process is completed, the optimum structural weight corresponding279
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to the optimal parameters of the network is found.280

2.3. Auto-tuning hyper-parameters281

The parameters associated with the network architecture and training procedure, which are282

known as hyper-parameters, cannot be directly estimated from the training data but must be283

set before the learning process. They play a paramount role in enhancing the effectiveness of284

employing the neural network for real-world applications. Nevertheless, identifying the optimal285

hyper-parameters encounters difficulties due to the lack of a closed-form expression for the286

Hyper-parameter Optimization (HPO) problem. And it is described as an expensive black-box287

problem when searching for extrema. Therefore, conventional algorithms are not suitable for288

implementing such tuning tasks. More concretely, the gradient-based algorithms are inadequate289

for solving this problem because the gradient information is not available. Meanwhile, the290

gradient-free algorithms normally require a large number of training times, which is infeasible291

for computationally expensive problems. In addition, the grid and random search techniques292

are usually employed to select the optimal hyper-parameters. However, the grid search trains all293

possible permutations of hyper-parameters, which can result in training the network for a very294

long time. Meanwhile, the random search cannot cover the entire parameter space. And a major295

setback for both techniques is that they are completely unaware of previous evaluations [65].296

To overcome this computing challenge, optimization techniques based on surrogate models297

were suggested for handling expensive optimization problems. Among the different surrogate298

modeling techniques, the Bayesian optimization algorithm is known as a popular and powerful299

tool for searching the best combination of hyper-parameters of neural networks [66]. It has300

demonstrated efficiency and robustness in automatic hyper-parameters tuning of the machine301

learning models. Thus, the BO is chosen to find the optimal network. Accordingly, the hyper-302

parameters tuning is posed as an unconstrained optimization problem, which can be expressed303

as follows304
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βββ∗ = argmin
βββ∈Ω

Lmin (βββ) , (13)

where Lmin (βββ) denotes the minimum loss function value found by the network corresponding305

to the hyper-parameter vector βββ. And it is regarded as the objective function for tuning hyper-306

parameters. In order to find the optimal network, a Gaussian Process (GP) as a surrogate307

model is constructed to approximate this unknown function. And the acquisition function, also308

known as the infill strategy, is utilized to guide the search of hyper-parameters. In this study,309

three standard acquisition functions, including Lower Confidence Bound (LCB), Probability of310

Improvement (PI), and Expected Improvement (EI), are considered to compare and evaluate311

the performance of BO. Details regarding the derived Bayesian formulation of the Gaussian312

process model for tuning hyper-parameters are provided in Appendix A.313

Fig. 5 illustrates an overall schematic of the suggested framework, which includes two314

loops. Therein, the inner loop, as shown in Algorithm 1, represents the training phase of the315

FNN to identify the minimum loss function corresponding to the hyper-parameters. And its316

basic workflow is summarized as follows:317

Step 1: Firstly, the connectivity matrix of truss members, which can be easily collected from318

the geometric information of structures, is set as the entire training data for the first319

step.320

Step 2: Next, a neural network is built using the hyper-parameters suggested by BO in Al-321

gorithm 2. Therein, all trainable parameters θθθ0 are initialized using truncated normal322

distribution in the range [-1, 1], and updated by using Adam optimizer323

Step 3: Calculation of the predicted cross-sectional areas Â using the feedforward propagation324

with Eq. (2).325

Step 4: Substitution of the values of Â into Eq. (3) yields the weight of truss structure, which326

is known as the objective function of the structural optimization.327

Step 5: Force method is employed to estimate the constraints, including the displacements δδδ328

and stresses σσσ corresponding to the predicted cross-sectional areas Â.329
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Step 6: Substitution of the values of the weight and constraint values into Eq. (4) achieves the330

loss function.331

Step 7: The gradients of the loss function with respect to the parameters by using Eq. (10),332

JAX, and backward propagation.333

Step 8: The trainable parameters of the network are updated by Eq. (11).334

Step 9: The training task ends when either the norm of the residual gradient of two consecutive335

epochs ∥∇L (θθθt)−∇L (θθθt−1)∥ must not be greater than 10−2 in the last 15 epochs336

(nwmax = 15) or the maximum number of epoch epochmax reaches. If the criterion is337

not satisfied, then return to step 3; otherwise, stop the training process.338

Algorithm 1: Force neural network for structural optimization
Input:

- Structure: material properties, geometry, boundary conditions, loads
- NN: hyper-parameters βββ, Adam optimizer

Output: optimal parameters θθθ∗, optimum weight of truss structure W
1 Calculate the connectivity matrix Cs by Eq. 1
2 Construct a NN with initial parameters θθθ0 distributed in the range [-1, 1]
3 Set the parameters of Adam optimizer as the default settings [64]
4 while nf < nwmax or epochmax is not reached do
5 Predict Â (Cs, θθθt) using the feedforward propagation

6 Compute the weight of truss structure W
(
Â (Cs, θθθt)

)
by Eq. (3)

7 Calculate the displacement δδδ (Cs, θθθt) and stress σσσ (Cs, θθθt) by FM
8 Loss function L (θθθt) is estimated by Eq. (4)
9 ∂W

∂Âj
is calculated by Eq. (10)

10 ∂c

∂Âj
is computed by the automatic differentiation JAX

11
∂Âj

∂θt
is calculated automatically by the backward propagation

12 Update trainable parameters θθθt+1 of the network by Eq. (11)
13 If ∥∇L (θθθt)−∇L (θθθt−1)∥ < 10−2 then nf = nf + 1
14 t=t+1

Subsequently, the minimum loss value obtained by the Algorithm 1 is forwarded to the339

outer loop which allows tuning the hyper-parameters of the network using the BO algorithm.340

Clearly, the objective of the outer loop is to pinpoint the hyper-parameters that yield the best341

minimum weight of the truss structure with respect to the best minimum loss function value, as342

shown in Algorithm 2. The fundamental stages of this algorithm is described as follows:343
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Step 1: Firstly, Latin Hypercube Sampling (LHS) technique is used to collect a set of initial344

combination of hyper-parameters βββ1:p from the design domain.345

Step 2: Based on the above set of hyper-parameters, FNN is trained to estimate the correspond-346

ing minimum loss function values LLLmin(1:p) by Algorithm 1.347

Step 3: Next, a set of initial observations D =
{
βββ1:p,LLLmin(1:p)

}
containing the hyper-parameters348

and the corresponding minimum loss function values is collected.349

Step 4: The surrogate model based on the Gaussian process model is built on D.350

Step 5: A next potential hyper-parameter configuration βββn+1 is found by maximizing the ac-351

quisition function Eq. (A.6).352

Step 6: FNN with respect to the new sample point βββn+1 is trained to evaluate the minimum353

loss function Lminn+1 by Algorithm 1.354

Step 7: The new data point
(
βββn+1,Lminn+1

)
is appended to the existing data D.355

Step 8: Check the stopping criterion (n ≤ nTmax). If the the stopping criterion is not satisfied,356

go to step 4, else the solution with the best weight W ∗
min corresponding the optimal357

hyper-parameters θθθ∗358

3. Numerical examples359

In the following section, several numerical examples are investigated to verify and evalu-360

ate the capability of the proposed framework for sizing optimization of truss structures. For361

this purpose, the obtained results will be compared with the conventional algorithms, such362

as DE, Particle Swarm Optimizer (PSO), PSO with passive congregation (PSOPC), Heuris-363

tic PSO (HPSO), Harmony Search, Teaching-Learning-Based Optimization, Big Bang–Big364

Crunch, and recently published results using the machine learning models like Deep Unsuper-365

vised Learning (DUL), and PINEFN. To enhance the reliability and computational efficiency366

of the network, the BO algorithm is utilized for the automatic hyper-parameters tuning. In367

order to get the best possible network, the initial number of hyper-parameter sets (p) used to368
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build the initial surrogate model is set to 10, while the total number of hyper-parameter com-369

binations (nTmax) evaluated throughout the entire BO process is set to 30 in all examples. In370

this work, two types of hyper-parameters are chosen to fine-tune the model: one was related to371

the network structure, including the number of hidden layers, neurons, and activation function,372

and the other was associated with adjusting the learning rates. The allowed ranges of values373

for each hyper-parameter are listed in Table 1. Note that the number of hidden neurons and374

activation functions are the same for all hidden layers. In addition, SoftMax and Adam are375

adopted as the activation function for the output layer and optimizer during the performance376

process. Furthermore, the training process of the FNN concludes when either the maximum377

allowed number of epochs is reached, or the norm of the gradient value is less than 0.01 in the378

last 15 epochs (nwmax = 15) [62, 67]. To evaluate the influence of uncertain quantities, HPO379

is executed through thirty independent runs with different initial points.380

Algorithm 2: Automatic tuning of DNN hyper-parameters using Bayesian optimiza-
tion

Input:
-p : initial number of hyper-parameter sets
-nTmax: maximum number of training times

Output: optimal hyper-parameters βββ∗, best weight of truss structure W ∗
min

1 LHS is used to collect hyper-parameters βββ1:p from the design domain
2 Training the network corresponding to βββ1:p to estimate the minimum loss function

values LLLmin(1:p)

3 Collect a set of initial observations D =
{
βββ1:p,LLLmin(1:p)

}
4 Current best combination of hyper-parameters βββ+ = argmin

βββi∈D
Lmin (βββi)

5 Set n = p
6 while n ≤ nTmax do
7 GP’s parameters are found by maximizing likelihood function
8 Build the GP model on Dn

9 Find βββn+1 by maximizing Eq. (A.6)
10 Training FNN with the hyper-parameters βββn+1 to evaluate Lminn+1 by Algorithm 1
11 Append Dn+1 = Dn ∪

{(
βββn+1,Lminn+1

)}
12 Estimate βββ∗

13 Update βββ+ = βββ∗

14 n = n+ 1

Meanwhile, the parameters of the DUL, PINEFN, and DE algorithms are set similar to381

Hau et al. [60, 68]. Due to the stochastic nature of the metaheuristic algorithm, the best382
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result is determined through 30 independent runs to ensure the reliable solution of the DE.383

To get an unbiased comparison of the different models, all numerical examples were executed384

on a personal computer utilizing the Pytorch library in the Python language. Furthermore,385

all computations were performed on a desktop PC equipped with an Intel Core i5-8500 CPU386

running at @ 3.0 GHz, 16 GB of RAM, and Windows 10.387

Table 1
Configuration space for the hyper-parameters of the network.

Hyper-parameter Search space Type
No. of hidden layers [1, 4] Integer
No. of hidden neurons [20, 60] Integer
Activation function [ReLU, Sigmoid, Softmax, Tanh, LeakyReLU] Categorical
Learning rate [0.001, 0.1] Real
Step size [2, 10] Integer
Gamma [0.05, 0.8] Real

Problem 01. 10-bar planar truss
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Fig. 6. A 10-bar planar truss structure.

3.1. 10-bar truss388

A ten-bar planar truss structure, subjected to two loading conditions as shown in Fig. 6,389

is examined as the first design optimization problem. The loading conditions are as follows:390

(1) the first condition with P1 = 444.822 kN and P2 = 0 kN; (2) the other condition with P1391

= 667.233 kN and P2 = 222.411 kN. The cross-sectional areas of truss members, which are392

considered as continuous design variables, have their minimum values specified at 0.645 cm2.393
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All members are made of a material with an elastic Young’s modulus of 68947.573 MPa, mass394

density of 27679.905 kg/m3, and allowable stresses of 172.369 MPa in tension and compres-395

sion. In addition, the displacements of free nodes are restricted to ±5.08 cm in all directions.396

In both loading cases, the network performs training with the maximum epoch size of 1000 as397

a stopping criterion. Furthermore, all infill strategies within the BO framework utilize the same398

set of 10 initial hyper-parameter configurations for a fair comparison.399

Table 2
Statistics of the optimal weight (kg) with different acquisition functions for the 10-bar planar
truss (Case 1).

Metric
Acquisition functions

PI LCB EI
Min 2295.855 2295.831 2295.655
Max 2296.907 2296.716 2295.917
Mean 2296.280 2296.353 2295.749
Std 0.118 0.102 0.027
95% CIU 2296.303 2296.373 2295.754
95% CIL 2296.257 2296.333 2295.744

Table 3
Optimum hyper-parameters of the network obtained using the BO with different acquisition
functions for the 10-bar planar truss (Case 1).

Acquisition Hyper-parameter
function No. of hidden No. of hidden Learning Activation Step

Gamma
layers neurons rate function size

PI 3 60 0.100 ReLU 2 0.050
LCB 4 25 0.010 ReLU 8 0.500
EI 3 60 0.022 ReLU 5 0.158

For the first loading case, a comparison of the statistics of the optimal weight, including400

minimum (Min), maximum (Max), mean, standard deviation (Std), 95% confidence interval401

upper (95% CIU), and lower (95% CIL) bounds found by the network using various infill strate-402

gies, are summarized in Table 2. Additionally, Table 3 presents the optimal hyper-parameters403

of the network corresponding to the best weight. Firstly, it is easily seen that the best optimal404

weight obtained by various acquisition functions are in good agreement. Although there were405

not significant differences between the minimum weights, the EI infill strategy identified the406

lightest design overall (Wmin = 2295.655 kg; Std = 0.027 kg; 95% CI [2295.754, 2295.744]407

kg), followed by the LCB (Wmin = 2295.831 kg; Std = 0.102 kg; 95% CI [2296.373, 2296.333]408
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Fig. 7. Convergence histories of the HPO using BO for the 10-bar planar truss (Case 1).

kg), and then the PI (Wmin = 2295.855 kg; Std = 0.118 kg; 95% CI [2296.303, 2296.257] kg).409

In addition, the mean value (2295.749 kg) is very close to the 95% CIU and 95% CIL with410

the smallest Std, and this indicates the high reliability of the EI infill strategy in identifying the411

optimal hyper-parameters of the network. From the data in Table 3, it is observed that although412

both EI and PI indicate a similar architecture network, there are different parameters associated413

with learning rates. And this shows the significant role of adjusting the learning rate for fitting414

the neural network. Besides, the ReLU activation function, identified by all infill strategies,415

possesses salient advantages, such as computationally efficiency, fast convergence, parameter-416

free, and helping to prevent gradient saturation [69, 70]. Finally, the convergence histories417

of the optimal hyper-parameters tuning process using different infill strategies are depicted in418

Fig. 7 for the first loading case. Note that all convergence curves coincide during the first 10419

iterations because they use the same ten initial hyper-parameter sets generated by the LHS to420

ensure a fair comparison between the infill strategies. It is obvious that the EI demonstrates421

its efficiency and faster convergence in tuning the hyper-parameters with the best minimum422

weight design compared to the others. As a result, it is selected as the infill strategy for BO in423
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this work.424
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Fig. 8. Weight convergence histories of the 10-bar truss obtained using the FNN and other
algorithms for the first load case.

Tables 4 - 5 summarized a comparison of the optimal solutions obtained by our framework425

with the optimal network and other studies for the first loading case. It is easily seen that426

the optimum weight obtained through FNN (2295.655 kg) agrees well with the PSOPC [71]427

(2295.631 kg), HPSO [71] (2295.595 kg), PINEFN [60] (2295.658 kg), and DE (2295.580 kg)428

without violating constraints. Although a lighter design found by Lee [72] (2294.216 kg), it vi-429

olates the design constraints with maximum constraint violation error (CVE) 0.091%. As seen430

from Table 5, it is evident that none of the constraints are violated. In addition, the statistical431

results obtained by the proposed model show quite good agreement with the DE. However, in432

terms of reliability, the present model outperforms the DE algorithm regarding the statistics433

of the minimum weight while still maintaining accuracy. The weight convergence histories of434

three algorithms are depicted in Fig. 8. As observed, FNN and PINEFN have similar conver-435

gence rates that rapidly decrease in the first 200 epochs. However, our model tends to be stable436

and achieves the optimal weight around 500 epochs, while the PINEFN needs 700 epochs437
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to approach the optimal solution. In contrast, the DE algorithm exhibits slow convergence438

and requires a significant number of Finite Element Analysis (FEA) evaluations (6680) to get439

the optimal weight. This can be explained by the fact that the DE is the gradient-free algo-440

rithm, so it demands a large number of function evaluations for optimization. Meanwhile, FNN441

and PINEFN models are designed based on the neural network, which serves as an optimizer442

for solving optimization problems. Thus, the weight optimization process for both these ap-443

proaches relied on the gradient descent method and automated sensitivity analyses. And that’s444

why it significantly reduces the number of function evaluations, as well as their convergence445

rates are much faster than the DE.446

For the second load case, the optimal results obtained by FNN in comparison with other447

studies, including the hyper-parameters, design variable, weight, statistics, and convergence448

histories, are reported in Tables 6, 7, 8, and Figs. 9-10. Accordingly, the proposed frame-449

work found the minimum weight (2121.507 kg) with respect to the best combination of hyper-450

parameters (3, 40, 0.076, ReLU, 10, 0.303) obtained after 23 training iterations. It can be451

easily seen that the minimum weight obtained by Rizzi [73] (2121.415 kg) and FNN (2121.507452

kg) are ranked as the first and second best among all compared algorithms without violating453

constraints, as shown in Table 7. Although the weight obtained by Lee [72] (2117.737 kg)454

represents the lightest designs, the constraints are violated with the CVE of 0.195 %. As the455

first load case, the data show that the FNN can find the optimum design more efficiently and re-456

liably than the DE. More concretely, the deviation (0.168 kg) between the maximum (2121.675457

kg) and minimum (2121.507 kg) optimal values of the structural weight found by FNN is very458

small, whilst it is 4.221 kg for the DE algorithm. Additionally, it is clear that the Std of the459

optimal objective function value obtained by the present model (0.021 kg) is relatively small460

compared to that of the DE (0.148 kg). For the DE algorithm, the stress constraint at member461

5 is a little bit violated. Meanwhile, the structural responses found by the FNN satisfy all the462

constraints. A comparison of the structural weight convergence histories is depicted in Fig. 10.463

Clearly, the FNN converges more rapidly than the PINEFN and DE. It reaches the optimal mass464

of structure after only 800 epochs. On the contrary, the PINEFN and DE require 900 epochs465

and more than 80 times the number of analyses (8000), respectively.466
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Table 4
Comparison of the obtained results for the 10-bar planar truss (Case 01).

Ai (cm2)
Li [71] Schmit Rizzi Lee Mai [60] This study

PSO PSOPC HPSO [9] [73] [72] PINEFN DE FNN
A1 215.929 197.219 198.090 215.690 198.264 194.516 196.993 196.774 196.993
A2 0.710 0.645 0.645 0.645 0.645 0.658 0.652 0.645 0.652
A3 149.529 148.219 149.464 156.516 154.413 146.516 149.729 149.774 149.742
A4 99.839 97.729 97.955 92.000 95.052 98.516 98.258 98.052 98.219
A5 23.542 0.645 0.645 0.645 0.645 0.658 0.645 0.645 0.645
A6 0.748 3.529 3.555 0.645 0.645 3.510 3.555 3.523 3.561
A7 53.729 48.342 48.129 53.793 55.107 48.652 48.116 48.161 48.103
A8 150.580 136.510 135.342 133.806 135.187 139.097 135.826 136.206 135.658
A9 148.477 139.071 138.761 127.032 140.877 138.387 138.677 138.522 138.871
A10 1.226 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645
Wbest (kg) 2508.139 2295.631 2295.595 2308.332 2302.734 2294.216 2295.658 2295.580 2295.655
CV Emax (%) None None None 21.136 None 0.091 None None None
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Table 5
Statistics of the constraints and weight for the 10-bar planar truss (Case 01).

Metric
DE FNN

v1 (cm) v2 (cm) σ5 (MPa) W (kg) v1 (cm) v2 (cm) σ5 (MPa) W (kg)
Min -5.080 -5.060 172.305 2295.580 -5.080 -5.057 172.286 2295.655
Max -5.080 -5.057 172.369 2296.411 -5.080 -5.057 172.369 2295.917
Mean -5.080 -5.057 172.357 2295.768 -5.080 -5.057 172.339 2295.749
Std 0.000 0.000 0.003 0.036 0.000 0.000 0.010 0.027
95% CIU -5.080 -5.057 172.356 2295.754 -5.080 -5.057 172.341 2295.754
95% CIL -5.080 -5.057 172.358 2295.780 -5.080 -5.057 172.337 2295.743

Table 6
Optimum hyper-parameters obtained by using the BO for different problems.

Test problems
Hyper-parameters

No. of hidden No. of hidden Learning Activation Step
Gammalayers neurons rate function size

10-bar truss (case2) 3 40 0.076 ReLU 10 0.303
17-bar planar truss 3 57 0.053 ReLU 8 0.535
25-bar space truss 1 26 0.048 ReLU 10 0.499
72-bar truss (case 1) 3 33 0.084 LeakyReLU 4 0.304
72-bar truss (case 2) 4 54 0.031 LeakyReLU 8 0.631
120-bar dome truss 2 45 0.001 LeakyReLU 8 0.339
200-bar planar truss 1 30 0.064 LeakyReLU 8 0.307

3.2. 17-bar truss467

Next, a 17-bar plane truss structure illustrated in Fig. 11 is examined as the second numeri-468

cal example for size optimization. The structure is subjected to a vertical load of 444.822 kN in469

the negative y-direction at node 9. All cross-sectional areas of elements are considered as de-470

sign variables. The Young’s modulus and material density are 206842.718 MPa and 7418.214471

kg/m3 for all members. The displacements of free nodes are limited to ±5.08 cm, and allowable472

stresses of members are set to 344.738 MPa in both compression and tension. And a maximum473

of 1000 epochs is used as a stopping criterion for the training process.474
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Fig. 9. Convergence history of the HPO using BO for the 10-bar truss structure for the second
load case.
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Fig. 10. Weight convergence histories of the 10-bar planar truss using the FNN and other works
for the second load case.
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Table 7
Comparison of the obtained results for the 10-bar planar truss (Case 02).

Ai (cm2)
Li [71] Schmit Rizzi Lee Mai [60] This study

PSO PSOPC HPSO [9] [73] [72] PINEFN DE FNN
A1 147.968 153.180 150.664 156.710 151.826 150.000 153.103 151.193 152.690
A2 0.729 0.652 0.645 0.645 0.645 0.658 0.652 0.645 0.645
A3 163.580 163.142 164.529 150.619 163.168 166.000 162.826 163.297 162.826
A4 92.729 92.987 91.935 88.090 92.735 93.613 91.729 93.181 92.819
A5 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645
A6 12.839 12.703 12.723 12.710 12.708 12.755 12.742 12.710 12.710
A7 79.652 79.755 79.761 81.742 79.929 78.774 79.974 79.897 79.877
A8 83.374 81.897 83.187 80.929 82.742 81.355 82.342 82.890 82.226
A9 133.406 131.116 131.329 141.748 131.148 131.355 131.568 131.077 131.303
A10 0.645 0.665 0.652 0.645 0.645 0.645 0.645 0.645 0.645
Wbest (kg) 2122.572 2121.769 2121.583 2128.183 2121.415 2117.737 2121.565 2121.435 2121.507
CV Emax (%) None None None None None 0.195 None 0.000 None
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Table 8
Statistics of the constraints and weight for the 10-bar planar truss (Case 02).

Metric
DE FNN

v2 (cm) v4 (cm) σ5 (MPa) σ6 (MPa) W (kg) v2 (cm) v4 (cm) σ5 (MPa) σ6 (MPa) W (kg)
Min -5.080 -3.973 172.361 172.330 2121.435 -5.080 -3.962 172.362 172.355 2121.507
Max -5.080 -3.909 172.369 172.369 2125.655 -5.080 -3.955 172.369 172.369 2121.675
Mean -5.080 -3.947 172.367 172.360 2121.885 -5.080 -3.957 172.368 172.367 2121.587
Std 0.000 0.003 0.000 0.002 0.148 0.000 0.000 0.001 0.001 0.021
95% CIU -5.080 -3.950 172.367 172.360 2121.832 -5.080 -3.957 172.368 172.367 2121.591
95% CIL -5.080 -3.947 172.367 172.361 2121.938 -5.080 -3.960 172.368 172.367 2121.583
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Problem 02. 17-bar planar truss

Problem 03. 200-bar planar truss
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Fig. 11. A 17-bar planar truss structure.

As the previous example illustrates, the optimal hyper-parameters, as shown in Table 6 and475

Fig. 12, were found after 30 training times by the BO using the EI infill strategy. Additionally,476

Tables 9 and 10 report the optimal network’s results, including the design variables, weights,477

constraints, and statistics. With a weight of 1171.128 kg, the FNN is the second-lightest design,478

surpassed only by the optimal weight obtained by Khot [3] (1171.126 kg). However, it is479

smaller than the other studies (PSO [71]:1235.753 kg; PSOPC [71]: 1171.561 kg; HPSO [71]:480

1171.148 kg; PINEFN [60]: 1171.162 kg; and DE 1171.133 kg). Although the smallest weight481

found by Lee [72] is 1170.636 kg, it violates the design constraints (0.044%). Furthermore,482

the 95% CI values obtained by FNN are quite close to the minimum, maximum, and mean483

optimal weights, with a very small deviation (0.004 kg), whilst the Std of the DE (0.034 kg)484

is 8 times greater than that of our approach. From the data in Table 10 and Fig. 13, it is485

easily seen that the FNN performs better than the DE in terms of the reliability as well as the486

number of structural analyses. Our model rapidly indicates the optimum weight with only 1000487

analyses, whereas the DE takes 9960. As can be seen in the plot, the convergence speed of the488

proposed framework with the optimal network is improved and faster than that of the PINEFN.489

Therefore, this once again demonstrates the effectiveness of automatic hyper-parameter tuning490

of the FNN.491
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Fig. 12. Convergence history of the HPO using BO for the 17-bar planar truss.
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Fig. 13. Weight convergence histories of the 17-bar planar truss using the FNN and other
works.
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Table 9
Comparison of the obtained results for the 17-bar planar truss.

Ai (cm2)
Lee Li [71] Khot Adeli Mai [60] This study
[72] PSO PSOPC HPSO [3] [74] PINEFN DE FNN

A1 102.071 101.716 103.103 102.555 102.774 103.413 102.619 103.026 102.761
A2 0.697 14.600 0.645 0.665 0.645 0.690 0.729 0.645 0.652
A3 77.393 89.381 78.335 78.013 77.871 78.600 77.858 77.903 77.877
A4 0.645 0.684 0.645 0.645 0.645 0.710 0.645 0.645 0.645
A5 52.581 73.264 52.245 52.019 52.045 54.303 52.090 51.955 52.019
A6 35.529 25.258 35.910 36.071 35.884 36.871 35.852 35.864 35.890
A7 76.316 52.071 75.690 76.871 76.987 73.103 76.884 77.148 77.000
A8 0.645 0.645 0.645 0.645 0.645 0.677 0.645 0.645 0.645
A9 51.187 37.742 51.497 51.387 51.258 47.103 51.284 51.252 51.232
A10 0.645 14.800 0.729 0.645 0.645 0.742 0.665 0.645 0.645
A11 26.406 40.729 26.284 26.297 26.161 26.103 26.200 26.058 26.174
A12 0.645 21.774 0.852 0.645 0.645 0.652 0.645 0.645 0.645
A13 36.516 35.058 36.561 36.581 36.497 36.200 36.548 36.426 36.503
A14 26.200 25.277 25.748 25.794 25.806 26.103 25.839 25.806 25.819
A15 36.490 22.800 35.839 35.794 35.858 33.239 35.806 35.794 35.858
A16 0.645 14.929 0.652 0.665 0.645 0.690 0.671 0.652 0.645
A17 36.013 22.852 35.839 35.723 35.994 34.103 35.994 35.961 35.987
Wbest (kg) 1170.636 1235.753 1171.561 1171.148 1171.126 1176.809 1171.162 1171.133 1171.128
CV Emax (%) 0.044 None None None None 1.693 None None None

33



Table 10
Statistics of the constraints and weight for the 17-bar planar truss.

Metric
DE FNN

v9 (cm) W (kg) v9 (cm) W (kg)
Min -5.080 1171.133 -5.080 1171.128
Max -5.080 1171.971 -5.080 1171.165
Mean -5.080 1171.282 -5.080 1171.134
Std 0.000 0.034 0.000 0.004
95% CIU -5.080 1171.270 -5.080 1171.135
95% CIL -5.080 1171.294 -5.080 1171.133

3.3. 25-bar space truss492

The next example deals with the design of a 25-bar space truss structure, as shown in493

Fig. 14. All truss members are made of a material with a density of 2767.990 kg/m3 and494

a Young’s modulus 68947.573 MPa. For this structure, two loading cases, as presented in495

Table 11, are considered. In addition, the cross-sectional areas of members are classified into 8496

groups according to the design variables and their corresponding allowable stresses, as listed in497

Table 12. Besides, the displacements of free nodes are constrained within the interval [- 0.889,498

0.889] cm. To find the minimum mass of the structure, the network performs training with the499

maximum number of analyses equal to 1000.500

Table 11
Loading conditions for the 25-bar space truss(kN).

Node
Case 1 Case 2

Fx Fy Fz Fx Fy Fz

1 0 88.964 -22.241 4.448 44.482 -2.224
2 0 -88.964 -22.241 0 44.482 -2.224
3 0 0 0 2.224 0 0
6 0 0 0 2.224 0 0
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Table 12
Allowable stresses for the structural elements of the 25-bar space truss.

Ai Compressive stress (MPa) Tension stress (MPa)
A1 241.951 275.790
A2-A5 79.910 275.790
A6-A9 119.314 275.790
A10-A11 241.951 275.790
A12-A13 241.951 275.790
A14-A17 46.602 275.790
A18-A21 47.981 275.790
A22-A25 76.408 275.790

Problem 04. 25-bar space truss  
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Fig. 14. A 25-bar space truss structure.
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The BO with the EI strategy indicated the optimal hyper-parameters of the network af-501

ter only 20 training iterations, as shown in Table 6 and Fig. 15. Accordingly, the optimal502

architecture of the network found by our approach (10-26-1) is smaller than those of DUL (6-503

20-20-20-1) and PINEFN (6-30-30-30-2). Therefore, the smaller network trains faster due to504

requiring fewer weights and biases. To evaluate the performance of the proposed method, a505

comparison of the optimal results found by the FNN and the other algorithms is reported in Ta-506

bles 13 and 14. As expected, it can be observed that the optimal weight identified by the FNN507

(247.321 kg) agrees well with DUL [60] (247.529 kg) and Camp [75] (247.380 kg) without508

violating constraints. Note that Lee [72] found the smallest weight (246.927 kg), but it violates509

the constraints with an error of 0.206%. Although the results gained by Li [71] (247.294 kg),510

Degertekin [76] (247.249 kg), PINEFN [60] (247.308 kg), and DE (247.282 kg) are slightly511

lighter than the FNN, the errors between them and Degertekin [76] are less than 0.02%. Ac-512

cording to the obtained statistical results, the present framework demonstrates the stability of513

optimized weight with the small standard deviation of 0.008 kg. A visual representation of514

the convergence histories between the FNN, DE, DUL, and PINEFN is illustrated in Fig. 16.515

As the above examples, the proposed approach converges faster than the DE and DUL. It only516

requires 1000 structural analyses, while the DUL and DE demand 1500 and 7520, respectively.517

Table 13
Optimization results obtained for the 25-bar space truss.

Ai (cm2)
Lee Li Kaveh Degertekin Mai [60] Camp This study
[72] [71] [77] [76] DUL PINEFN [75] DE FNN

A1 0.303 0.065 17.174 0.065 0.084 0.084 0.065 0.065 0.077
A2-A5 13.045 12.710 12.858 13.361 12.587 12.781 13.497 12.832 12.865
A6-A9 19.032 19.458 19.716 19.077 19.135 19.381 19.123 19.290 19.252
A10-A11 0.065 0.065 0.065 0.065 0.077 0.071 0.065 0.065 0.090
A12-A13 0.090 0.065 0.065 0.065 0.084 0.071 0.065 0.065 0.071
A14-A17 4.439 4.477 4.290 4.445 4.497 4.432 4.445 4.413 4.419
A18-A21 10.690 10.845 10.594 10.458 11.135 10.819 10.329 10.819 10.813
A22-A25 17.181 17.052 17.284 17.271 17.052 17.135 17.329 17.181 17.187
Wbest (kg) 246.927 247.294 247.280 247.249 247.529 247.308 247.380 247.282 247.321
CV Emax (%) 0.206 None 2.06 None None None None None None
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Table 14
Statistics of the constraints and weight for the 25-bar space truss.

Metric
DE FNN

v1 (cm) v2 (cm) W (kg) v1 (cm) v2 (cm) W (kg)
Min 0.889 -0.889 247.282 0.889 -0.889 247.321
Max 0.889 -0.889 247.455 0.889 -0.889 247.409
Mean 0.889 -0.889 247.292 0.889 -0.889 247.358
Std 0.000 0.000 0.006 0.000 0.000 0.008
95% CIU 0.889 -0.889 247.290 0.889 -0.889 247.359
95% CIL 0.889 -0.889 247.294 0.889 -0.889 247.357
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Fig. 15. Convergence history of the HPO using BO for the 25-bar space truss.
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Fig. 16. Weight convergence histories of the 25-bar space truss using the FNN and other works.

3.4. 72-bar space truss518

A 72-bars space truss shown in Fig. 17 is considered for the next numerical example. All519

cross-sectional areas of the truss members are divided into 16 groups corresponding to design520

variables, as listed in Table 16. The bars are made of the same material with Young’s modulus of521

68947.572 MPa, density of 2767.990 kg/m3, and allowable stress of ±172.369 MPa. Besides,522

the displacements of joints are restricted to ±0.635 cm. This structure is subjected to two523

loading conditions, as tabulated in Table 15. Therefore, the lower bounds of the design variables524

are set at 0.645 cm2 and 0.065 cm2 for the first and second cases, respectively. To achieve the525

goal, the maximum epoch is set to 1000 for this particular application.526

Table 15
Loading conditions for the 72-bar space truss (kN).

Node
Case 1 Case 2

Fx Fy Fz Fx Fy Fz

17 22.241 22.241 -22.241 0 0 -22.241
18 0 0 0 0 0 -22.241
19 0 0 0 0 0 -22.241
20 0 0 0 0 0 -22.241

38



Problem 05. 72-bar space truss 
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Fig. 17. A 72-bar space truss structure.

Figs. 18, 20, and Table 6 present the convergence curves and the network’s best hyper-527

parameters for different loading cases. From these graphs, the infill strategy EI with 10 initial528

samples found two best-fitted hyper-parameter sets, which are found after 27 and 22 samples529

for the first and second loading cases, respectively. A comparison between the FNN with the530

optimal network and other algorithms for the structural optimization is reported in Tables 16,531

17, and 18. From the data in these tables, the results reveal that: 1) the optimum weights found532

by the proposed approach are ranked as the second-best and best designs without violating con-533

straints for the first and second loading cases, respectively; 2) the standard deviations obtained534

by the FNN are small (0.005 kg and 0.026 kg); 3) clearly, the confidence upper bounds of the535

optimal weights are quite close to the confidence lower bounds. Based on these results, our536

model has once again demonstrated its effectiveness in automatic hyper-parameter tuning, as537

39



well as its capability to yield a high reliability solution for the optimization of truss structure.538

Additionally, Figs. 19 and 21 depict the convergence histories of the FNN, DE, DUL, and539

PINEFN. As can be seen on these plots, the proposed FNN model’s learning curves always540

converge more quickly than the DUL and conventional DE algorithms, and similar to the learn-541

ing process of the PINEFN. Both our model and PINEFN indicate the optimal solution with542

only 1000 analyses, while the DUL (2500) and DE (15000) are still far behind. Therefore, the543

present approach shows more efficiency than the conventional algorithms.544
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Fig. 18. Convergence history of the HPO using BO for the 72-bar space truss (Case 1).
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Fig. 19. Weight convergence histories of the 72-bar space truss using the FNN and other works
(Case 1).

Table 16
Optimization results obtained for the 72-bar space truss with displacement and stress
constraints (Case 01).

Ai (cm2)
Kaveh Camp Degertekin Bekdaş Mai [60] Ehsan This study

[77] [75] [76] [78] DUL PINEFN [79] DE FNN
A1-A4 12.284 11.987 12.297 12.103 12.006 11.981 12.452 11.974 11.865
A5-A12 3.329 3.265 3.265 3.329 3.232 3.258 3.284 3.245 3.265
A13-A16 0.645 0.645 0.645 0.645 0.658 0.645 0.645 0.645 0.645
A17-A18 0.645 0.645 0.645 0.645 0.652 0.645 0.645 0.645 0.645
A19-A22 8.116 8.052 8.142 8.381 8.155 8.090 8.045 8.116 8.110
A23-A30 3.252 3.400 3.297 3.387 3.265 3.252 3.310 3.239 3.252
A31-A34 0.645 0.645 0.645 0.645 0.652 0.645 0.645 0.645 0.645
A35-A36 0.645 0.652 0.645 0.645 0.652 0.645 0.645 0.645 0.645
A37-A40 3.342 3.361 3.432 3.206 3.206 3.194 3.419 3.219 3.194
A41-A48 3.361 3.335 3.329 3.284 3.277 3.277 3.335 3.277 3.284
A49-A52 0.645 0.645 0.645 0.645 0.658 0.645 0.645 0.645 0.645
A53-A54 0.652 0.652 0.645 0.645 0.665 0.645 0.645 0.645 0.645
A55-A58 1.013 1.013 1.006 1.019 0.645 0.645 1.006 0.645 0.645
A59-A66 3.497 3.555 3.542 3.439 3.348 3.368 3.510 3.374 3.374
A67-A70 2.665 2.529 2.645 2.639 2.587 2.568 2.652 2.574 2.574
A71-A72 3.716 3.819 3.677 3.697 3.465 3.458 3.626 3.458 3.465
Wbest (kg) 172.211 172.297 172.1973 171.95 167.8487 167.675 172.208 167.669 167.676
CV Emax (%) None None None None None None None None None
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Table 17
Optimization results obtained for the 72-bar space truss with displacement and stress
constraints (Case 02).

Ai (cm2)
Adeli Adeli Sarma Lee Li Mai This study

[80] [37] [81] [72] [71] [60] DE FNN
A1-A4 13.071 17.774 11.174 12.665 12.303 11.839 12.348 12.239
A5-A12 3.439 3.290 3.368 3.103 3.381 3.355 3.323 3.323
A13-A16 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
A17-A18 0.065 0.065 0.084 0.071 0.065 0.065 0.065 0.065
A19-A22 7.465 8.839 8.677 7.955 8.310 8.477 8.445 8.394
A23-A30 3.671 3.271 3.555 3.265 3.374 3.342 3.348 3.355
A31-A34 0.065 0.065 0.065 0.071 0.065 0.065 0.071 0.071
A35-A36 0.065 0.065 0.084 0.077 0.065 0.071 0.123 0.071
A37-A40 3.316 3.103 3.174 3.471 3.510 3.361 3.387 3.361
A41-A48 3.090 3.277 3.516 3.439 3.406 3.348 3.335 3.329
A49-A52 0.065 0.065 0.426 0.065 0.123 0.065 0.065 0.071
A53-A54 0.065 0.413 0.084 1.077 0.129 0.652 0.684 0.658
A55-A58 1.019 1.387 1.148 1.039 1.135 1.084 1.142 1.084
A59-A66 3.548 3.342 3.381 3.497 3.452 3.471 3.426 3.439
A67-A70 2.226 2.703 2.555 3.084 2.748 2.923 2.935 2.897
A71-A72 3.213 3.252 3.839 3.555 3.948 3.768 3.774 3.729
Wbest (kg) 3172.052 170.778 165.289 165.257 165.498 165.130 165.708 165.099
CV Emax (%) - - - - - None None None

Table 18
Statistics of the weight for the 72-bar space truss (kg).

Algorithm
Metric
Min Max Mean Std 95% CIU 95% CIL

Case 1
DE 167.669 167.713 167.678 0.001 167.678 167.679
FDNN 167.676 167.720 167.695 0.005 167.696 167.694

Case 2
DE 165.708 165.892 165.747 0.007 165.744 165.749
FDNN 165.099 165.305 165.180 0.026 165.185 165.174

42



5 10 15 20 25 30
165

165.2

165.4

165.6

165.8

166

166.2

166.4

Wbest= 165.099 (kg)

Fig. 20. Convergence history of the HPO using BO for the 72-bar space truss (Case 2).
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Fig. 21. Weight convergence histories of the 72-bar space truss using the FNN and other works
(Case 2).
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Problem 06. 120-bar dome truss  
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Fig. 22. 120-bar dome truss.

3.5. 120-bar dome truss545

A 120-bar dome truss, as shown in Fig. 22, is investigated as the fifth example. As depicted546

in this plot, the design variables, representing the cross-sectional areas of the members, are547

categorized into seven groups. All members are made of steel with a yield stress (σy) of 399.896548

MPa, an elasticity modulus (E) of 209945.360 MPa, and a density of 7971.813 kg/m3. The549

minimal values for the design variables are 5 cm2. According to the AISC ASD (1989) [82],550

the permissible tensile (σt
i) and compressive (σc

i ) stresses are calculated as follows:551
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 σt
i = 0.6σy for σi ≥ 0,

σc
i for σi < 0,

(14)

with552

σc
i =


[(

1− λ2
i

2C2
C

)
σy

]
/
(

5
3
+

3λi

8CC
− λ3

i

8C3
C

)
for λi < CC ,

12π2E
23λ2

i
for λi ≥ CC ,

(15)

where Li denotes the truss member length; CC is the slenderness factor that separates the553

elastic and inelastic buckling regions (CC =
√
2π2E/σy); λi represents the slenderness ratio554

(λi = kLi/ri); k is the effective length factor; ri is the radius of gyration (ri = aAb
i ); a and555

b denote constants, which are set to 0.4993 and 0.6777 for bars. In this example, where only556

vertical loads act on the structure in the negative direction of the z-axis, they are composed557

of 60.007 kN at node 1, 29.999 kN at nodes 2-13, and 10 kN at nodes 14-37. Besides the558

stress constraints, all vertical displacements of free joint are restricted to 0.5 cm. Similar to the559

previous examples, the total number of epochs is 1000 for the training process.560

The solution and iteration history for addressing the hyper-parameters optimization prob-561

lem using the infill sampling criteria EI of the BO are shown in Table 6 and Fig. 23. A562

comparison between the obtained results corresponding to the optimal network and other al-563

gorithms is summarized in Tables 19 and 20. As expected, the BO requires only 30 training564

iterations to identify the optimal combination of hyper-parameters (2, 45, 0.001, LeakyReLU,565

8, 0.3387), resulting in the minimum weight (14741.589 kg). It is worth mentioning that the566

FNN achieves the lightest design overall. It is interesting here that our model outperforms the567

state-of-the-art approach PINEFN (14744.442 kg) by Mai et al. [60] in terms of the quality568

of solution. Furthermore, the best optimum weight is very close to worst (14741.612 kg) and569

mean (14741.601 kg) weights with the small Std values (0.003 kg). On the other hand, the570

95% CI upper (14741.601 kg) and lower (14741.600 kg) bounds are not significantly different571

as well as close to the best weight. From the obtained statistical results of the objective and572

constraints, the FNN provides higher reliability than the DE algorithm. Fig. 24 displays the573

learning curves of the present method, PINEFN, and DE for the structural weight. Once again574

shows that our approach converges the fastest compared to the other methods.575
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Fig. 23. Convergence history of the HPO using BO for the 120-bar dome truss.
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Fig. 24. Weight convergence histories of the 120-bar dome truss using the FNN and other
works.
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Table 19
Comparison of the obtained results for the 120-bar dome truss.

Ai (cm2)
Kaveh Kaveh Kaveh Talatahari Kaveh Kaveh Mai This study

[83] [84] [85] [86] [87] [77] [60] DE FNN
A1 19.968 19.529 19.510 19.510 19.510 19.510 12.368 12.342 12.342
A2 92.935 94.232 94.948 95.355 95.361 95.374 96.310 96.052 96.058
A3 32.387 32.542 32.774 32.626 32.594 32.587 37.116 37.097 37.084
A4 21.626 20.252 20.239 20.232 20.239 20.239 16.561 16.600 16.548
A5 55.684 55.116 54.845 54.729 54.839 54.826 64.716 64.826 64.858
A6 22.142 21.723 21.303 21.355 21.219 21.239 23.090 22.968 23.077
A7 16.123 16.110 16.110 16.116 16.110 16.110 12.748 12.768 12.768
Wbest (kg) 15081.447 15082.808 15082.137 15082.500 15081.969 15081.833 14744.442 14741.630 14741.589
CV Emax (%) - - - - - - None None None
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Table 20
Statistics of the constraints and weight for the 120-bar dome truss.

Metric
DE FNN

v20 (cm) w3 (cm) σ100 (MPa) σ65 (MPa) W (kg) u14 (cm) w3 (cm) σ99 (MPa) σ62 (MPa) W (kg)
Min 0.091 -0.500 -19.843 12.534 14741.631 0.094 -0.500 -19.509 12.643 14741.589
Max 0.097 -0.500 -18.732 12.786 14746.243 0.094 -0.500 -19.475 12.677 14741.612
Mean 0.094 -0.500 -19.417 12.671 14742.681 0.094 -0.500 -19.494 12.657 14741.601
Std 0.000 0.000 0.041 0.011 0.233 0.000 0.000 0.003 0.003 0.003
95% CIU 0.094 -0.500 -19.432 12.667 14742.597 0.094 -0.500 -19.493 12.658 14741.601
95% CIL 0.094 -0.500 -19.403 12.675 14742.764 0.094 -0.500 -19.494 12.657 14741.600
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Table 21
Design variables of the 200-bar planar truss.

Design
variables

Member group Design
variables

Member group

A1 1, 2, 3, 4 A16 82, 83, 85, 86, 88, 89,
91, 92, 103, 104, 106,
107, 109, 110, 112, 113

A2 5, 8, 11, 14, 17 A17 115, 116, 117, 118
A3 19, 20, 21, 23, 24 A18 119, 122, 125, 128, 131
A4 18, 25, 56, 63, 94,

101, 132, 139, 170, 177
A19 133, 134, 135, 136, 137, 138

A5 26, 29, 32, 35, 38 A20 140, 143, 146, 149, 152
A6 6, 7, 9, 10, 12, 13, 15,

16, 27, 28, 30, 31, 33,
34, 36, 37

A21 120, 121, 123, 124, 126, 127,
129, 130, 141, 142, 144, 145,
147, 148, 150, 151

A7 39, 40, 41, 42 A22 153, 154, 155, 156
A8 43, 46, 49, 52, 55 A23 157, 160, 163, 166, 169
A9 57, 58, 59, 60, 61, 62 A24 171, 172, 173, 174, 175, 176
A10 64, 67, 70, 73, 76 A25 178, 181, 184, 187, 190
A11 44, 45, 47, 48, 50, 51,

53, 54, 65, 66, 68, 69,
71, 72, 74, 75

A26 158, 159, 161, 162, 164, 165,
167, 168, 179, 180, 182, 183,
185, 186, 188, 189

A12 77, 78, 79, 80 A27 191, 192, 193, 194
A13 81, 84, 87, 90, 93 A28 195, 197, 198, 200
A14 95, 96, 97, 98, 99, 100 A29 196, 199
A15 102, 105, 108, 111, 114

3.6. 200-bar planar truss576

To demonstrate the efficiency and reliability of the FNN, the last numerical example con-577

sidered is a plane truss with 200 members. They are made of material with density and elastic578

modulus of 7833.413 kg/m3 and 206842.719 MPa, respectively. The geometric information,579

finite element representation, and boundary conditions are depicted in Fig. 25. The continuous580

design variables, with the lower bound to be 0.645 cm2, are cross-sectional areas categorized581

into 29 groups, as shown in Table 21. The stress of members is limited in interval [-68.948;582

68.948] MPa. The system is subjected to three loading cases: 1) a horizontal load of 4.448 kN583

in the positive direction of the x-axis is applied to nodes 1, 6, 15, 20, 29, 34, 43, 48,57, 62 and584

71; 2) a vertical load of 44.482 kN in the negative direction of the y-axis is imposed on nodes585

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20,22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38,586

40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73,587
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74 and 75; 3) both cases (1) and (2) acting together. In this problem, the maximum number of588

epochs allowed for the training process was 5000.589

Table 22
Optimization results obtained for the 200-bar planar truss.

Ai (cm2)
Lee Kaveh Lamberti Degertekin Mai [60] Pierezan This study
[72] [77] [88] [89] DUL PINEFN [90] DE FNN

A1 0.806 0.665 0.948 0.942 0.761 0.665 0.897 0.813 0.645
A2 6.555 5.923 6.065 6.071 6.394 6.110 6.039 6.013 6.084
A3 0.690 0.774 0.645 0.645 0.735 0.748 0.645 0.690 0.665
A4 0.710 0.652 0.645 0.652 1.497 0.716 0.645 0.645 0.665
A5 12.497 12.039 12.516 12.523 12.632 12.581 12.490 12.458 12.535
A6 1.735 1.826 1.910 1.910 1.877 1.923 1.877 1.845 1.852
A7 0.671 0.645 0.645 0.645 1.045 0.794 0.645 0.658 0.652
A8 19.181 19.148 20.026 20.135 20.335 20.226 19.884 19.806 20.206
A9 0.845 0.645 0.645 0.645 0.890 0.671 0.645 1.587 0.658
A10 26.987 25.458 26.477 26.923 26.987 26.652 26.335 26.258 26.658
A11 2.561 2.413 2.600 2.587 2.477 2.716 2.561 2.890 2.639
A12 2.852 2.903 1.232 1.168 1.368 0.684 1.910 1.174 0.658
A13 33.464 32.000 35.019 34.987 35.142 35.219 34.742 34.781 35.110
A14 1.232 6.929 0.645 0.645 0.819 0.684 0.645 0.748 0.690
A15 40.264 38.574 41.471 41.432 41.606 41.658 41.194 41.232 41.568
A16 4.510 5.071 3.697 3.684 3.432 3.555 4.084 3.839 3.523
A17 0.748 4.755 0.858 1.006 1.387 0.794 1.187 1.329 0.897
A18 50.090 47.619 51.432 51.342 51.684 51.593 51.871 51.406 51.445
A19 0.645 4.303 0.645 0.645 0.923 0.897 0.645 1.116 0.652
A20 56.955 53.548 57.884 57.793 58.045 57.968 58.323 57.858 57.897
A21 4.510 7.723 4.548 4.645 4.548 4.697 4.813 5.090 4.594
A22 10.039 6.452 2.710 3.084 1.581 1.542 0.845 1.329 1.490
A23 70.845 69.845 70.090 70.303 69.852 70.052 70.393 70.368 69.819
A24 0.852 0.645 0.645 0.645 0.819 1.084 0.645 0.742 0.645
A25 78.381 75.471 76.523 76.755 76.490 76.490 76.845 76.819 76.271
A26 10.561 8.955 6.671 6.968 5.535 6.323 5.568 6.006 5.929
A27 32.277 31.948 43.110 41.690 44.477 43.077 44.626 44.897 44.232
A28 60.355 56.774 69.748 69.671 72.058 70.400 70.755 70.090 70.987
A29 97.368 94.613 89.290 89.819 87.761 88.819 88.219 88.806 88.084
Wbest (kg) 11542.610 11410.796 11541.944 11561.230 11588.334 11537.798 11544.007 11595.009 11500.491
CV Emax (%) 3.69 9.97 0.071 None None None None None None

Table 6 and Fig. 26 illustrate the optimal hyper-parameters found after 30 training times.590

Additionally, the optimum results with respect to the optimal network, which include the591

weight, design variables, constraints, and statistics, are reported in Tables 22 and 23. It is inter-592

esting that in this structure, the optimum weights obtained by the other studies (DE: 11595.009593

kg; Pierezan [90]: 11544.007 kg; Degertekin [89]: 11561.230 kg; DUL [60]: 11588.334 kg;594

and PINEFN [60]: 11537.798 kg) are much larger than the proposed approach (11500.491 kg).595

Clearly, our framework saves over 30 kg compared to the second-best approach PINEFN. From596

the data in Table 23, it can easily be seen that the range of confidence interval (11501.959 kg597

to 11502.104 kg) changes for narrow and close to the worst (11503.045 kg), mean (11502.031598

kg), and best (11500.491 kg) weights with the small Std (0.333 kg). More importantly, all599
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constraint values found by FNN are very close and satisfy the allowable stresses. Meanwhile,600

the objective and constraints found by DE have a large standard deviation and the maximum601

values are still quite far from our result. And clearly, this work gives the best result in terms602

of both the constraints and optimum weight. Although the DUL, PINEFN, and FNN mod-603

els based on the gradient descent method all utilize the neural network as the backbone, our604

paradigm outperforms the other two algorithms. This can easily be explained by the fact that605

the gradient-based approaches are very sensitive to the choice of the starting point. And its606

position is influenced heavily by the hyper-parameters of the network. Therein, the DUL and607

PINEFN models fix all hyper-parameters of the network during the whole training process.608

Hence, both algorithms may become trapped in local optima without tuning hyper-parameters.609

Meanwhile, our framework has completely overcome this drawback by using BO for auto-610

matic tuning of hyper-parameters of the network. And this process is the automatic selection of611

the starting point, when changing the hyper-parameters lead to change the position of starting612

point. Therefore, the FNN is capable of effectively handling design problems that contain local613

minima, as well as improving accuracy. The loss convergence histories of the DE, PINEFN,614

and FNN are depicted in Fig. 27. Clearly, the learning curve of the proposed method con-615

verges much more rapidly than those of the other algorithms. It achieves the optimal weight616

around 4000 analyses, while the DE and PINEFN demand 35000 and 4500, respectively. Con-617

sequently, this once again demonstrates the efficiency of the automatic hyper-parameter tuning618

of the DNN for solving structural optimization problems.619

Table 23
Statistics of the constraints and weight for the 200-bar planar truss.

Metric
DE FNN

σ112 (MPa) σ168 (MPa) W (kg) σ200 (MPa) σ121 (MPa) W (kg)
Min -68.948 1.481 11595.010 -68.948 68.915 11500.491
Max -7.472 60.840 12051.035 -68.946 68.948 11503.045
Mean -17.827 5.218 11718.071 -68.947 68.939 11502.031
Std 1.898 1.956 19.851 0.000 0.005 0.333
95% CIU -18.506 4.518 11710.968 -68.947 68.940 11502.104
95% CIL -17.148 5.917 11725.175 -68.947 68.938 11501.959
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Fig. 26. Convergence history of the HPO using BO for the 200-bar planar truss.

4. Discussion620

From Table 24, it is easily noticeable that the FNN requires significantly fewer structural621

analyses per run compared to the DE across all problems. More concretely, it takes only 1000622

and 5000 analyses in numerical examples 1-5 and 6, respectively. In contrast, the DE con-623

verges much more slowly, requiring 6 to 28 times the average number of structural analyses624

(Avg) compared to our model. In addition, compared to the neural network-based approaches,625

this study not only achieves better optimal weights but also converges faster than the DUL626

and PINEFN, especially in large-scale problems. Clearly, the hyper-parameters tuning process627

provides a good starting point which helps to improve performance. Furthermore, this is par-628

tially due to the self-normalized training data, which also increase the convergence rate for the629

training process. In terms of the computational time, the efficiency of the DE method performs630

better than the FNN, but only for optimization problems with few design variables (ie less than631

10), such as those given in numerical examples 1, 3, and 5. When the number of design vari-632
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Fig. 27. Weight convergence histories of the 200-bar planar truss using the FNN and other
works.

ables and the complexity of structures increase, the computational cost of the DE is higher than633

the FNN for the other structures. Specifically, the total times of the FNN (357.681 s) is less than634

the DE (410.076 s) for the 17-bar planar truss. For the 72-bar space truss, it takes only 545.927635

s and 1116.490 s to gain optimal solutions, while the DE requires 932.225 s and 2144.720 s636

for the first and second cases, respectively. Meanwhile, its computational cost (4049.605 s) is637

reduced by more than three times compared to the DE (15857.088 s) for the 200-bar planar638

truss with the largest design variable (29). This can be easily explained by the fact that the DE639

is a population-based optimization algorithm. Hence, it requires a larger number of function640

evaluations to effectively explore the search space for high-dimensional problems [91]. And641

this is clearly shown in the examples 2, 4, and 6. Contrary to the DE algorithm, our framework642

relies on the gradient based optimization strategy using automatic differentiation tools to evalu-643

ate the sensitivity. Thus this demonstrated the cost-effectiveness of the FNN for the large-scale644

and complex structures compared with the conventional algorithms.645
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Table 24
Efficiency of the different algorithms.

No. of No. of No. of DE FNN
Example elements dofs design Total Avg Wbest Total Avg Wbest

variables times (s) (kg) times (s) (kg)
10-bar planar truss (Case 1)

10 8 10
206.145 9410 2295.580 239.261 1000 2295.655

10-bar planar truss (Case 2) 214.245 11214 2121.435 256.230 1000 2121.507
17-bar planar truss 17 14 17 410.076 28563 1171.133 357.681 1000 1171.129
25-bar space truss 25 18 8 294.685 7495 247.282 354.144 1000 247.321
72-bar space truss (Case 1)

72 48 16
932.225 15689 167.669 545.927 1000 167.676

72-bar space truss (Case 2) 2144.720 22691 165.708 1116.490 1000 165.099
120-bar dome truss 120 111 7 781.164 6793 14741.630 854.994 1000 14741.589
200-bar planar truss 200 150 29 15857.088 49325 11595.009 4049.605 5000 11500.491
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In terms of the accuracy, it is easily observed that the optimum weights found by the FNN646

are a good agreement with the DE, DUL, and PINEFN for the examples 1-5 with very small647

deviation. For the 200-bar planar truss, our approach (11500.491 kg) achieves the lightest648

weight structure saving from 37 to 95 kg, compared to the alternative methods (DE: 11595.009649

kg; DUL: 11588.334 kg; PINEFN: 11537.007 kg) while satisfying all constraints. It means650

that these existing methods converge towards a local optimum instead of the global optimum.651

Clearly, their performance is influenced by the choice of algorithm parameters. More con-652

cretely, the DE, also known as the gradient-free algorithm, is sensitive to control parameters,653

such as population size, mutation factor, and crossover rate, when the dimensionality of the654

problem increases. And its ability to balance exploration and exploitation to locate the opti-655

mal solution is closely related to parameter tuning. This is one major drawback that leads to656

inefficiency and more time-consuming optimization processes [91]. Meanwhile, the DUL and657

PINEFN based on the gradient of the neural network may become trapped in a local minimum658

due to the position of the initial starting point, which depends on the hyper-parameters. In659

these two approaches, user experience was applied to select them. Hence, their accuracy is660

strongly dependent on prior knowledge and experience. For our framework, its most outstand-661

ing characteristic is that BO allows for the automatic tuning of the network’s hyper-parameters.662

Therefore, FNN is capable of effectively handling large-scale problems, improving in terms663

of speed of convergence as well as escaping local minima. In addition, it yields a simple and664

easily applied model due to automatically calculating sensitivity.665

5. Conclusions666

In this article, an efficient FNN-based framework was successfully developed for the de-667

sign optimization of truss structures. In order to achieve this goal, a deep neural network with668

automatic hyper-parameters tuning using BO was constructed to guide the learning process by669

minimizing the loss function, which was designed based on the weight and constraint func-670

tions of the structure with supporting FM. And the optimum weight of the structure was found671

immediately at the training end corresponding to the minimum loss. The simplicity, effec-672

tiveness, and reliability of the proposed approach were demonstrated numerical examples for673
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the size optimization of truss structures. The obtained results revealed that our paradigm out-674

performs previously released works in solution quality, convergence speed, and computational675

efficiency for the large-scale problem. One outstanding characteristic is that the connectivity676

matrix was considered as the self-normalized and unlabeled training data without using any677

structural analyses as well as sampling techniques. Hence, its learning possibility only relies678

upon the connectivity information, which are known as the input data. In addition, a poten-679

tially more interesting point is that it could automatically tune hyper-parameters to avoid being680

trapped in a local optimum. On the other hand, the sensitivity calculation became easy and681

simple to determine by automatic differentiation tools. Owing to these aforementioned excel-682

lent properties, FNN shows great potential as an alternative approach for addressing complex683

issues in structural optimization.684

Despite its advantages, the FNN may face the computing challenges that have yet to be685

resolved. Firstly, this model only can solve the sizing optimization of truss structures. There-686

fore, future studies can extend to the size and shape optimization, topology optimization, and687

reliability-based design optimization problems. Next, it cannot handle scenarios of unforeseen688

conditions, such as loads, material properties, constraints, and so on, while still accurately689

predicting the optimal weight without conducting the optimization again. To overcome this690

challenge, the integration of FNN and transfer learning offers a promising approach for gener-691

alizing to new conditions, enabling the prediction of optimal weight without requiring model692

re-training for future developments. In addition, this work only considers the design optimiza-693

tion of structures with linear behavior. However, in reality, all structures exhibit nonlinear694

responses in some way, so these need to be considered in the optimization process. And this695

is one of the future directions to fully understand real structural performance. And finally, a696

multi-fidelity model that integrates the FNN with high-fidelity data obtained from experiments697

is a promising approach for addressing optimization challenges in real-life scenarios.698
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Appendix A. Gaussian process711

LHS is employed to generate p initial combinations of hyper-parameters in the design space.712

And then the corresponding minimum loss function values (Lmin) are found by training the713

networks with respect to each combination of hyper-parameters (βββ). Based on the obtained714

training sample set
{
βββ1:p, LLLmin(1:p)

}
, a GP-based surrogate model is constructed to approx-715

imate the objective function for tuning hyper-parameters. The samples follow a multivariate716

Gaussian distribution LLLmin(1:p) ∼ N (0,K), where the kernel matrix K is expressed as follows717

K =


k (βββ1,βββ1) · · · k (βββ1,βββp)

... . . . ...

k (βββp,βββ1) · · · k (βββp,βββp)

 , (A.1)

in which k is the Matérn kernel function. Let Lmin(p+1) denote the minimum loss function value718

achieved by the network with respect to the next combination of hyper-parameters βββp+1. When719

LLLmin(1:p) and Lmin(p+1) are jointly Gaussian, and they are given by720

58



 LLLmin(1:p)

Lmin(p+1)

 = N

 0,

 K k1

kT
1 k (βββp+1, βββp+1)


 , (A.2)

with721

k1 =

[
k (βββ1, βββp+1) k (βββ2, βββp+1) · · · k (βββp, βββp+1)

]T
. (A.3)

Based on Bayes’ rule, the posterior probability distribution Lmin(p+1) at a next sample βββp+1722

can be expressed as723

P
(
Lmin(p+1)|βββp+1, βββ1:p, LLLmin(1:p)

)
∼ N

(
µ (βββp+1) , σ

2 (βββp+1)
)
, (A.4)

where σ2(.) and µ(.) are the covariance function and posterior mean, respectively. They are724

given by725

σ2 (βββp+1) = k (βββp+1, βββp+1)− kT
1 [K+ σ2I]

−1
k1,

µ (βββp+1) = kT
1 [K+ σ2I]

−1LLLmin(1:p).
(A.5)

At each iteration of BO, the acquisition function, also known as the infill strategy, is used726

to guide the selection of the next set of the hyper-parameters to evaluate. It plays a central role727

in the tuning process. There are three most widely used acquisition functions, namely LCB, PI,728

EI. And their mathematical expressions are reformulated as follows729

LCB (βββ) = µ (βββ)− λσ (βββ) , (A.6)

PI (βββ) =
µ (βββ)−Wmin (βββ

+)

σ (βββ)
, (A.7)

730

EI (βββ) =
(
µ (βββ)− Lmin

(
βββ+

))
Φ (ξ) + σ (βββ)ϕ (ξ) , (A.8)

where731

ξ =
µ (βββ)− Lmin (βββ

+)

σ (βββ)
, (A.9)

in which λ > 0 is a trade-off parameter between exploration and exploitation; βββ+ represents732

the current best hyper-parameters obtained from the surrogate model Lmin; Φ(.) and ϕ(.) are733

the standard normal cumulative distribution and probability density functions, respectively.734
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[58] O. Hasançebi, Adaptive evolution strategies in structural optimization: Enhancing their888

computational performance with applications to large-scale structures, Computers &889

structures 86 (2008) 119–132.890

[59] M. Sonmez, Artificial bee colony algorithm for optimization of truss structures, Applied891

Soft Computing 11 (2011) 2406–2418.892

[60] H. T. Mai, D. D. Mai, J. Kang, J. Lee, J. Lee, Physics-informed neural energy-force net-893

work: a unified solver-free numerical simulation for structural optimization, Engineering894

with Computers (2023) 1–24.895

[61] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,896

A. Paszke, J. VanderPlas, S. Wanderman-Milne, et al., Jax: composable transformations897

of python+ numpy programs (2018).898

[62] A. Chandrasekhar, S. Sridhara, K. Suresh, Auto: a framework for automatic differenti-899

ation in topology optimization, Structural and Multidisciplinary Optimization 64 (2021)900

4355–4365.901

[63] A. Chandrasekhar, K. Suresh, Tounn: Topology optimization using neural networks,902

Structural and Multidisciplinary Optimization 63 (2021) 1135–1149.903

[64] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint904

arXiv:1412.6980 (2014).905

[65] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization., Journal of906

machine learning research 13 (2012).907

[66] F. Hutter, L. Kotthoff, J. Vanschoren, Automated machine learning: methods, systems,908

challenges, Springer Nature, 2019.909

[67] M. Paul, Applied machine learning, https://cmci.colorado.edu/classes/910

INFO-4604/resources.html, 2018. Accessed: 2021–04-19.911

66

https://cmci.colorado.edu/classes/INFO-4604/resources.html
https://cmci.colorado.edu/classes/INFO-4604/resources.html
https://cmci.colorado.edu/classes/INFO-4604/resources.html


[68] H. T. Mai, Q. X. Lieu, J. Kang, J. Lee, A novel deep unsupervised learning-based frame-912

work for optimization of truss structures, Engineering with Computers 39 (2023) 2585–913

2608.914

[69] H. T. Mai, S. Lee, D. Kim, J. Lee, J. Kang, J. Lee, Optimum design of nonlinear struc-915

tures via deep neural network-based parameterization framework, European Journal of916

Mechanics-A/Solids 98 (2023) 104869.917

[70] M. Korenciak, Go game move prediction using convolutional neural network (2018).918

[71] L. Li, Z. Huang, F. Liu, Q. Wu, A heuristic particle swarm optimizer for optimization of919

pin connected structures, Computers & Structures 85 (2007) 340–349.920

[72] K. S. Lee, Z. W. Geem, A new structural optimization method based on the harmony921

search algorithm, Computers & structures 82 (2004) 781–798.922

[73] P. Rizzi, Optimization of multi-constrained structures based on optimality criteria?, in:923

17th structures, structural dynamics, and materials conference, 1976, p. 1547.924

[74] H. Adeli, S. Kumar, Distributed genetic algorithm for structural optimization, Journal of925

Aerospace engineering 8 (1995) 156–163.926

[75] C. V. Camp, Design of space trusses using big bang–big crunch optimization, Journal of927

Structural Engineering 133 (2007) 999–1008.928

[76] S. Degertekin, M. Hayalioglu, Sizing truss structures using teaching-learning-based opti-929

mization, Computers & Structures 119 (2013) 177–188.930

[77] A. Kaveh, S. Talatahari, Size optimization of space trusses using big bang–big crunch931

algorithm, Computers & structures 87 (2009) 1129–1140.932

[78] G. Bekdaş, S. M. Nigdeli, X.-S. Yang, Sizing optimization of truss structures using flower933

pollination algorithm, Applied Soft Computing 37 (2015) 322–331.934

[79] E. Pouriyanezhad, H. Rahami, S. Mirhosseini, Truss optimization using eigenvectors of935

the covariance matrix, Engineering with Computers 37 (2021) 2207–2224.936

67



[80] H. Adeli, O. Kamal, Efficient optimization of space trusses, Computers & structures 24937

(1986) 501–511.938

[81] K. C. Sarma, H. Adeli, Fuzzy genetic algorithm for optimization of steel structures,939

Journal of Structural Engineering 126 (2000) 596–604.940

[82] A. M. Committee, A. I. of Steel Construction, Manual of Steel Construction: Allowable941

Stress Design, American Institute of Steel Construction, 1989.942

[83] A. Kaveh, S. Talatahari, Particle swarm optimizer, ant colony strategy and harmony search943

scheme hybridized for optimization of truss structures, Computers & Structures 87 (2009)944

267–283.945

[84] A. Kaveh, S. Talatahari, Optimal design of skeletal structures via the charged system946

search algorithm, Structural and Multidisciplinary Optimization 41 (2010) 893–911.947

[85] A. Kaveh, T. Bakhshpoori, Optimum design of space trusses using cuckoo search algo-948

rithm with levy flights (2013).949

[86] S. Talatahari, M. Kheirollahi, C. Farahmandpour, A. H. Gandomi, A multi-stage particle950

swarm for optimum design of truss structures, Neural Computing and Applications 23951

(2013) 1297–1309.952

[87] A. Kaveh, T. Bakhshpoori, E. Afshari, An efficient hybrid particle swarm and swallow953

swarm optimization algorithm, Computers & Structures 143 (2014) 40–59.954

[88] L. Lamberti, An efficient simulated annealing algorithm for design optimization of truss955

structures, Computers & Structures 86 (2008) 1936–1953.956

[89] S. Degertekin, Improved harmony search algorithms for sizing optimization of truss struc-957

tures, Computers & Structures 92 (2012) 229–241.958

[90] J. Pierezan, L. dos Santos Coelho, V. C. Mariani, E. H. de Vasconcelos Segundo,959

D. Prayogo, Chaotic coyote algorithm applied to truss optimization problems, Computers960

& Structures 242 (2021) 106353.961

68



[91] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, M. F. Tasgetiren, Differential evolution algo-962

rithm with ensemble of parameters and mutation strategies, Applied soft computing 11963

(2011) 1679–1696.964

69


	Introduction
	Force neural network framework
	Training data
	Deep Neural network
	Auto-tuning hyper-parameters

	Numerical examples
	10-bar truss
	17-bar truss
	25-bar space truss
	72-bar space truss
	120-bar dome truss
	200-bar planar truss

	Discussion
	Conclusions
	Gaussian process

