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a b s t r a c t 

In this study, a robust and simple unsupervised neural network (NN) framework is pro- 

posed to perform the geometrically nonlinear analysis of inelastic truss structures. The core 

idea is to employ the NN to directly estimate nonlinear structural responses without utiliz- 

ing any time-consuming incremental-iterative algorithms as those done in standard finite 

element method (FEM). To achieve such an objective, the loss function built via the total 

potential energy principle under boundary conditions (BCs) is minimized in the suggested 

NN model whose weights and biases are considered as design variables. In our computa- 

tional framework, spatial coordinates of truss nodes are treated as input data, whilst corre- 

sponding displacement degrees of freedom are taken account of output. At the beginning 

of each training step, feedforward is performed to get the predicted displacement field, and 

it is used to derive the loss function based on the physical law. Then, back-propagation is 

applied to update the parameters of the network. This adjustment, which is the so-called 

learning process, is repeated until the potential energy is minimized. Once the network is 

properly trained, the mechanical responses of inelastic structures can be easily obtained. 

The suggested methodology is also extremely simple to implement, while the unlabeled 

data is available, small in size, independent of sampling techniques, and without finite el- 

ement analyses (FEAs). Several benchmark examples regarding geometrical and material 

nonlinear analysis of truss structures are tested to show the effectiveness and reliability of 

the proposed paradigm. Obtained outcomes indicate that the developed NN framework is 

robust and can be extended to apply for other structures. 
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1. Introduction 

Most mechanical behavior of structures is nonlinear in one way or another [1,2] . Due to the nonlinear changes of ge-

ometrical and material properties, designing structures under such responses becomes more complex and is required in 

analysis to obtain more accurate behavior [3,4] . A variety of algorithms for solving nonlinear structural problems have 

been proposed during the last few decades, and they are generally classified into two groups [5] . In the first one, the

stiffness-based approach derived from the FEM employs incremental-iterative procedures such as incremental load method 

(ILM), Newton–Raphson, Quasi–Newton, Arc-length techniques, and so on, to update the stiffness matrix concerning the 

changes in the stress-strain relation and geometry of the structure. Owing to the salient advantanges of this methodol- 

ogy, it has been successfully applied in various nonlinear problems [6–12] . Nevertheless, the implementation of this ap- 

proach still requires a large amount of numerical simulation works, depending on controlling parameters of the nonlinear 

incremental-iterative techniques. To circumvent this bottleneck, an alternative approach based on the minimum energy prin- 

ciple in combination with optimization schemes was developed to allow the direct determination of nonlinear responses 

without the requirement of any incremental-iterative strategies as those implemented in FEM [13] . According that core 

idea, several metaheuristic algorithms known as gradient-free methods have been successfully applied for the above issue, 

such as genetic algorithm (GA) [14] , harmony search (HS) [15] , and particle swarm optimization (PSO) [16] etc. Although

these algorithms have the ability to search a near global optimum solution, they often require a larger number of evalu-

ation functions and are of a relatively slow convergence speed. Besides, the gradient-based optimization algorithms have 

also been successfully applied in this context. For instance, Ohkubo et al. [17] developed a modified sequential quadratic 

programming algorithm for the structural analysis by solving potential energy minimization problem (PEMP) or comple- 

mentary energy minimization problem (CEMP). In addition, an adaptive local search method (ALSM) was also released by 

Toklu [18] . Despite the fact that their convergence speed is fairly high, these methods always demand the compulsory cal-

culation of derivative information of the energy function with respect to the displacements. This performance is one of 

the main difficulties in solving the problem, even imposible in many cases. Therefore, the NN with the ability to approx-

imate any nonlinear function and its automatic differentiation has emerged as an efficient alternative tool to tackle this 

task. 

In recent years, machine learning (ML) has attained remarkable success in many fields to help decision-making, e.g. speed 

recognition, industrial automation, medical diagnoses, material informatics, etc. Among ML models, NNs have attracted at- 

tention in computational mechanics such as structural analysis [19–21] , materials sciences [22,23] , fluid mechanics [24,25] , 

structural optimization [26–29] , structural healthy monitoring [30–34] , fracture mechanics [35,36] , and so on. As indicated 

by Li et al. [37] , NN-based approaches can be categorized as purely data-driven and physics-informed ones. Accordingly, 

the data-driven methodology is often used to build surrogate models, while the other is employed to construct approxima- 

tion spaces. The main difference between them is the training data which contains both input and expected output data 

for data-driven approach while the other only requires input data. More concretely, in structural analysis applications, the 

output data are the structural responses including displacement, stress, strain, and so on, whose values are often obtained 

through numerical methods in FEAs. In recent times, the data-driven approach has been successfully applied to solve com- 

plex structural analysis problems including linear [37–41] and nonlinear [42–47] . But they depend strongly on the numerical 

simulation results as well as size data [37,48] . Hence, it has not been an appropriate numerical tool for the structural anal-

ysis, especially for nonlinear problems. On the contrary, to overcome these difficulties, the physics-informed ML model is 

developed based on the governing physical laws which are integrated into the unsupervised learning process. It is worth 

mentioning that its training data only demands input data, and it contains the known output information about the prob- 

lem. Indeed, this is one of the major strengths of this approach owing to the fact that it allows to establish an efficient

NN-based computational framework without utilizing any conventional numerical simulations such as FEA. With this re- 

gard, there are two common approaches concerning the choice of loss function based on the energy and residual of partial

differential equations (PDEs). And they have been successfully applied in several recent studies on structural analysis and 

fluid mechanics [49–54] . But this paradigm also depends significantly on the resolution of samples, sampling techniques, as 

well as the way of estimating a suitable training data size [37] . Furthermore, it has still not been yet utilized for geometri-

cally nonlinear analysis of inelastic truss structures thus far. 

Based upon the above-discussed investigations, this study aims at proposing an unsupervised NN model for geometrically 

nonlinear analysis of inelastic truss structures. Unlike other frameworks in the available literature, the training data of the 

proposed model is a set of the spatial coordinates of all joints which are easily collected from the connectivity information

of the structure without any specific sampling techniques, as well as its small size. The training process aims to find the

displacement field such that the total potential energy (TPE) is minimized. To do this, the feedforward (FF) as well as BCs

are employed and applied to attain the predicted displacement field. Relied on these predictions and physical laws, the TPE 

is built as a loss function, and its gradients concerning parameters are computed by back-propagation (BP) to adjust weights 

and biases of the network. This process is repeated until the obtained minimum energy. Once the network is trained, it

not only obtains the NN’s optimal parameters but also identifies the nonlinear structural responses as soon as the training 

process ends without utilizing any incremental - iterative algorithms or FEAs. The efficiency and reliability of the presented 

approach are also investigated through several numerical examples. 

The rest of this work is organized as follows. Section 2 provides the theoretical formulation of the TPE of truss structures.

Next, a novel unsupervised NN-based approach is suggested in Section 3 . In Section 4 , several numerical examples are
333 
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Fig. 1. Deformation of a space truss element. 

 

 

 

 

 

 

 

 

investigated to demonstrate the efficiency and robustness of the presented method. Finally, crucial conclusions are outlined 

in Section 5 . 

2. Theoretical formulation 

Structural analysis aims to obtain the responses for the equilibrium configuration under the action of external loads. In 

this section, the analysis of truss structures including linear and nonlinear behavior is described by minimizing the TPE 

[10,55] . Let us consider a truss-like structure that consists of n truss members and m nodes. Then the TPE of the system �p 

including the strain energy U and external work W can be expressed as [55] 

�p = U + W, (1) 

in which 

U = 

n ∑ 

k =1 

e k A k L k , (2) 

W = −P 

T u , (3) 

e k = 

∫ ε k 

0 

σk ( ε k ) d ε k , (4) 

where e k , L k , and A k are the strain energy density, length, and cross-sectional area of the k th member; u is the vector of

displacements at nodes; P denotes the vector of external forces; ε k and σk are strain and stress of the k th member, and

σ ( ε ) expresses the stress-strain relation for the material of member. 

In order to achieve the strain field, a space truss element with its initial configuration L 0 and current one L c is considered

as shown in Fig. 1 . It is easily to compute L 0 and L c of the element via coordinates of nodes 
(
x i , y i , z i , x j , y j , z j 

)
and

displacement field 

(
u i , v i , w i , u j , v j , w j 

)
. For more details, interested readers are suggested to consult Ref. [55,56] . 

Here, two frequently used strain models including engineering and Green strains for large displacement and small strain 

analysis are adopted in this work [56] . It should be noted that the stress-strain curve σ ( ε ) can be linear, piecewise linear

curve, or nonlinear, which depends on material properties and is assumed to be completely known for a given material 

type. Hence, if the displacements of member ends are determined, the strain and strain energy density of each member can

be easily estimated by the integral Eq. (4) . 

According to the principle of minimum potential energy, the nodal displacements vector u are considered as unknown 

solutions and are determined by minimizing the TPE with BCs. Once the displacement field is found, the other structural 

responses can be completely determined by the constitutive equations. 

3. Unsupervised learning-based approach framework 

In this section, an unsupervised learning-based framework is developed to resolve the nonlinear analysis of truss struc- 

tures. A flowchart of the overall proposed algorithm is illustrated in Fig. 2 where the parameters θθθ including weights and

biases of the network are design variables. According to this scheme, the network is set first up with the initial weight
334 
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Fig. 2. The whole process of an unsupervised learning-based framework for geometrically nonlinear analysis of inelastic truss structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and bias values according to the normal distribution criterion. The coordinates of all nodes in the structure are used as the

input training data, while the corresponding displacements are defined as the outputs obtained by the FF process. Based 

on these outputs, loads, BCs, and physical laws, the TPE including the strain energy and external force is established as the

loss function which is minimized by adjusting weights and biases of the network. To achieve this goal, BP is employed to

automatically calculate the sensitivity of the loss function with respect to the parameters, whereby they will be updated. 

The above computation is iterated and repeated many times, and it is called the learning process. Once the network is prop-

erly trained, the results in the context of nonlinear structural analysis can be found with minimum energy. In general, the

presented approach consists of three main components, namely training data, NN, and loss function. They are represented 

in greater detail in the following sub-sections. 

3.1. Training data 

In contrast to most of the previous approaches which utilized supervised learning models [42,57,58] , the framework 

presented here relies on unsupervised learning. The main distinction between them is that the output data is not given in

unsupervised learning. In other words, the responses of the structure including displacement, strain, stress, member force, 

etc. are not included in the training data. It means that we only have input data including a set of coordinates (x i , y i , z i ) of

all structural nodes for the learning process. Hence, the training data is easily obtained from the geometry of the structure 

and completely independent of sampling techniques. Additionally, its size is small (m × 2) and (m × 3) for planar and space

truss structures, respectively. Here m denotes the number of nodes, while 2 or 3 implies the number of spatial coordinates

for 2- or 3-dimensional truss. 

3.2. Neural network 

NN is one of the machine learning models used to represent a set of mathematical relationships between the inputs 

and outputs through a training process as the working way of the human brain. For illustration, a fully connected NN

with 3 layers is depicted in Fig. 3 . Therein, the input layer is known as the first layer which consists of three neurons

corresponding with the spatial coordinates (x, y, z) , the second layer as hidden layer consists of m h neurons which depends

on the complexity of the application, and the last layer is called the output layer with three neurons which corresponds to

the predicted displacements ( ̂  u , ̂  v , ˆ w ) . And the neurons of the present layer are connected to all units in the previous layer

via the parameters of the NN which consists of weights W 

(l) and biases b 

(l) 
, respectively. 

To train the network, both FF and BP processes are employed to adjust the parameters of the NN and are repeated over

and over until the loss converges to a minimum value. Specifically, in the FF process, a mapping from input to output nodes

can be expressed as ˆ I : R 

3 → R 

3 . The data is transmitted from the first layer to the last layer by the transformations. Hence,

the relation between the input and output of each layer is expressed as 

input layer : ˆ o 

0 = [ x, y, z ] ∈ R 

3 , 

hidden layer: ˆ o 

1 = f 1 
(
W 

1 ˆ o 

0 + b 

1 
)

∈ R 

m h , 

output layer : ˆ o 

2 = f 2 
(
W 

2 ˆ o 

1 + b 

2 
)

= 

[
ˆ u , ̂  v , ˆ w 

]
∈ R 

3 , (5) 

where f 1 (. ) and f 2 (. ) are in turn the activation function for hidden and output layers, which supports the network to learn

the nonlinear relationship between input and output, and make accurate predictions. Several common choices include Linear, 

ReLU, LeakyReLU, Sigmoid, Softmax, and Tanh. ˆ o 

1 and 

ˆ o 

2 denote the output of the hidden and output layers, respectively. 
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Fig. 3. Architecture of a fully-connected multi-layer network. 
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To identify optimal parameters, an optimization process, which is the so-called network training, is performed to mini- 

mize the loss function L . To do this, BP is required to obtain the gradient information of the loss with respect to the weights

and biases. And then, they are updated in the direction of the gradient descent, as expressed below 

t+1 W 

l 
pq = 

t W 

l 
pq − η

∂L 

∂ t W 

l 
pq 

, 

t+1 b l p = 

t b l p − η
∂L 

∂ t b l p 
f or 1 ≤ l ≤ 2 , (6) 

where η is the learning rate; p and q are the number of neurons in the l th and (l − 1) th layer, respectively; t denotes the

iteration index. Finally, the parameters will converge to the minimum loss value after an iterative process. 

3.3. Loss function 

As mentioned above, the outputs of the NN are the displacements expressed by the parameters including weights and 

biases of the network. Then, the TPE is computed by a sum of the strain energy and external work based on the outputs,

loads, and BCs. And this term serves as a loss function which is minimized in the training process. Its mathematical expres-

sion is given as follows 

L 

(
θθθ
)

= U 

(
ˆ u 

(
θθθ
))

+ W 

(
ˆ u 

(
θθθ
))

, (7) 

where ˆ u is the predicted displacement vector; θθθ is the parameter vector including weights and biases of the network. 

It should be noted that the loss function only contains the predicted displacements and this is an advantage of algorithm

based on unsupervised learning. At the same time, it is easily seen that instead of solving the nonlinear analysis problem by

using incremental-iterative methods, we now turn to minimize the loss function by training to find the optimal parameters 
∗θ ∗θ ∗ of the NN. 

θθθ ∗ = arg min 

θθθ

(
L 

(
θθθ
) )

. (8) 

It is also worth mentioning that the sensitivity of the loss function to parameters can be easily and automatically cal-

culated by using NN’s back-propagation. In this work, the training of the network is terminated when either the maximum 

number of epoch reaches or the norm of the gradient value is less than a threshold value of 0.01 [59] . Once the network is

trained, the displacement field and corresponding structural responses can be found. 

4. Numerical experiments 

In this section, several numerical examples are explored to demonstrate the efficiency of the proposed approach for non- 

linear analysis of truss structures including geometric nonlinearity, material nonlinearity, and dual nonlinearities. For that 
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Fig. 4. Stress - strain relationships considered in the analysis. 

Fig. 5. Schematic of a two-bar planar truss. 

 

 

 

 

 

 

 

 

 

 

 

purpose, the obtained results from the presented work are compared with those of other studies available in the literature. 

In all considered examples, the number of units in the input and output layers is equal to 2 or 3 for 2D or 3D problems,

respectively. Meanwhile, Grid search and trial error methods are used to determine the number of neurons in the hidden 

layers. For training, an Adam optimizer is employed to update the parameters of the network with the learning rate 0.01

[60] . Tanh and Linear are the activation functions chosen for the hidden and output layers, respectively. All experiments are

implemented on a desktop computer with Core i5-8500 CPU of @ 3.0 GHz and 16 GB RAM. 

4.1. Material and geometrical nonlinearities 

In this part, seven different types of materials are considered for geometrically nonlinear analysis of inelastic truss struc- 

tures with the stress - strain relationships, as depicted in Fig. 4 . In which, the first group includes four type of materials

which are denoted from MAT1 to MAT4 and built based on piecewise linear curves M1–M4 as shown on Fig. 4 a. Therein,

the strain-stress relation of MAT4 is unsymmetrical with respect to M4 in compression and M3 in tension while the others

are symmetrical. In the second group, three types of materials MATA, MATB, and MATC are the symmetrical stress-strain 

relations in tension and compression, and obtained from piecewise linear curves of MA, MB, and MC, as depicted in Fig. 4 b.

It should be noted that the relation given for MATC is defined by ε = 6 × 10 −10 σ 2 + 9 × 10 −7 σ . 

4.1.1. Two-bar truss 

A two-bar truss subjected to a vertical load P = 100 N at the middle point is investigated as the first example for the

nonlinear analysis, as depicted in Fig. 5 . The cross-sectional area and length of all members are set as A = 1 mm 

2 and

L 0 = 10 0 0 mm, respectively. Two types of materials, namely MAT1 and MAT3, are considered to evaluate the effects of only

geometric nonlinearity and both material and geometric nonlinearities. According to Ref. [18] , the analytical solution for 

geometrical nonlinearity is given as follows ⎧ ⎨ 

⎩ 

v 2 = L 0 tan ( θ ) , 

f 1 = f 2 = 

P 
2 sin ( θ ) 

, 

tan ( θ ) ( 1 − cos ( θ ) ) = 

P 
2 AE 

. 

(9) 

Firstly, several different combinations of activation functions and optimizers are adopted to identify the best combination 

under the same network architecture (2-10-2) with linear activation function in the output layer for material MAT1. The 

relative errors of the exact and the predicted potential energies are reported in Table 2 . It can be seen from the data in this
337 
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Table 1 

Type of material, number of hidden neurons, and epoch for different problems. 

Problem Material type Network architecture Epoch 

2-bar truss MAT1, 3 (2-10-2) 500 

6-bar truss MAT1, 2 (2-10-2) 500 

MAT3, 4 (2-100-2) 1000 

31-bars truss MATA, B, C (2-50-2) 2000 

25-bar truss MAT5 (3-50-3) 1000 

52-bar truss MAT6 (3-50-3) 1000 

10-bar truss MATA, B, C (2-10-2) 500 

21-bar truss MATA, B, C (2-10-2) 500 

Table 2 

Relative error of minimum TPE ( 10 −5 ) with various optimizers and activation functions. 

Activation function Optimizers 

Adam RMSprop Adadelta SGD Adagrad Adamax 

Softmax 1.8094 33.3622 476.3840 617.8942 6451.9175 3.3428 

Softplus 0.0449 73.9318 52.2400 1.5435 24.8778 0.1206 

Tanh 0.0022 9.1730 5.6941 0.2552 12.1375 0.0672 

Sigmoid 0.0389 10.0903 979.9133 0.1384 24.6756 0.1938 

ReLU 0.0819 17.2319 250.2252 3.2209 34.0667 0.5480 

Table 3 

Relative error of deflection (10 −7 ) with various neurons and hidden layers. 

No. of hidden layers No. of hidden neurons 

10 20 30 40 50 

1 0.2236 0.7362 0.7362 1.1833 31.8947 

2 2.1430 0.7362 1.6959 22.3579 84.1400 

3 2.6556 5.0222 5.0222 12.2529 28.0558 

4 4.0625 3.6153 1.6959 20.8905 82.7604 

Table 4 

Effect of different strain models for geometrically nonlinear responses of two-bar truss. 

Strain v 2 (mm) f 1 , 2 (N) �p (kN.mm) 

Exact Present Exact Present Exact Present 

Engineering 79.4952 79.4952 630.9532 630.9531 −5.9590 −5.9590 

Green 79.4952 79.3701 631.9484 629.9609 −5.9527 −5.9528 

Log 79.4952 79.6213 629.9600 631.9538 −5.9653 −5.9653 

Almansi 79.4952 79.8764 627.9799 633.9797 −5.9777 −5.9780 

 

 

 

 

 

 

 

 

 

 

 

table that Adam is the best optimizer among all with the lowest relative errors. Meanwhile, Tanh is either the best or the

second best in the combination of the other activation functions with optimizers. The result obtained by combining Tanh 

and Adam is of the smallest error ( 0 . 22 × 10 −7 ), so they are chosen for the implementation in this work. Additionally, the

impact of varying neurons and hidden layers in the network is also investigated to assess the predicted accuracy. According 

to the errors attained from Table 3 , increasing the number of neurons and hidden layers can not improve the performance

of the model, and the NN architecture (2-10-2) shown in Table 1 is the best selection to solve this example. 

Next, various strain models are considered to estimate their effect on the geometric nonlinear analysis. As shown in 

Table 4 , it is easily seen that the results achieved by the NN agree well with the analytical values for all strain models,

while the engineering strain is the best model with the small relative errors ( 1 . 58 × 10 −7 ). Thus, it is utilized throughout

the present work. 

As can be seen from Table 5 , the analysis results obtained from the NN, including deflection (v 2 ), member forces (f 1 , 2 ),

as well as minimum potential energy ( �p ) are a very good agreement with the analytical and ALSM outcomes. The con-

vergence curve of the NN is illustrated in Fig. 6 . It also indicates that the convergence speed accelerates in the early period

of epoch and approaches the optimal energy after only 150 epochs for two types of materials. In addition to considering

the effect of geometric and material nonlinearities on the structure, the variation of the external force is also investigated 

here. Corresponding to this change, the behavior of the system is shown in Fig. 7 , where the energies and deflections are

in keeping with previous observational studies. On the other hand, it can be seen that the material nonlinearity has a great

influence on the structural responses when the load P is greater than 50.5207(N). Hence, the obtained analysis results point 

out that NN is reliable and stable for solving nonlinear problems. 
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Fig. 6. The convergence histories of the loss function for the two-bar truss with the materials MAT1 and MAT3. 

Fig. 7. Responses of the 2-bar truss structure with varying external force. 

Table 5 

Comparison of analysis results for two-bar truss with different materials. 

MAT1 MAT3 

Exact Present ALSM [18] Present 

v 2 (mm) 79.4952 79.4952 125.9875 125.9882 

f 1 , 2 (N) 630.9532 630.9531 400.0000 400.0000 

�p (kN.mm) −5.9590 −5.9590 −7.0746 −7.0746 

 

 

 

 

 

 

4.1.2. Six-bar truss 

The next example analyzes a 6-bar planar truss structure with the geometry, finite element representation, loads, and 

boundary conditions as depicted in Fig. 8 . Here, members 2–4 have the same cross-sectional area of 100 mm 

2 , while the

remaining ones are 200 mm 

2 . In this example, material MAT1 is considered for both linear and geometric nonlinear analy-

ses. Three material types MAT2 to MAT4 are valid for material and geometric nonlinearities. This benchmark problem was 

previously analyzed by Toklu [18] using ALSM. Table 1 lists the details of network architectures used to train the model. 

As shown in Tables 6 and 7 , the obtained solutions reveal that the presented method is highly close to those found in

literature [18] . At the same time, it is easily be seen that the results of the linear and geometric nonlinear analysis are

practically the same, so the influence of geometry changes is small for this loading. But the effect of the material and

geometric nonlinearities is significant on the response of structure, where the horizontal displacement at node 4 increases 

10, 138, and 159 times for MAT2, MAT3, and MAT4, respectively. Moreover, it is also worthwhile emphasizing that the 

member force of elements 1–4 reaches the yield point for MAT3 and MAT4 as the data in Table 7 . Fig. 9 shows the TPE
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Fig. 8. A 6-bar planar truss structure. 

Table 6 

Comparison of joint displacements and energy for 6-bars truss with different solution techniques and different materials. 

Disp no. (mm) Linear Nonlinear 

MAT1 MAT1 MAT2 MAT3 MAT4 

FEM Present ALSM [18] Present ALSM [18] Present ALSM [18] Present ALSM [18] Present 

u 4 14.1497 14.1508 14.12 14.1199 139.71 139.7093 1931.60 1931.5973 2235.51 2235.5098 

v 4 2.8427 2.8431 2.83 2.8281 28.46 28.4541 −403.79 −403.7856 387.11 387.1073 

u 5 0.3001 0.3059 0.30 0.3016 3.30 3.2974 1.89 1.8945 −283.55 −283.5538 

v 5 2.3092 2.3104 2.32 2.3167 25.00 24.9958 88.17 88.1705 1277.18 1277.1859 

�p (kN.m) −1.061227 −1.061228 −1.059735 −1.059735 −11.27096 −11.27090 −36.75831 −36.75831 −52.09811 −52.09811 

Table 7 

Comparison of member forces for 6-bars truss with different solution techniques and different materials. 

Forces (kN) Linear Nonlinear 

MAT1 MAT1 MAT2 MAT3 MAT4 

FEM Present ALSM [18] Present ALSM [18] Present ALSM [18] Present ALSM [18] Present 

f 1 49.7251 49.7220 49.811 49.8106 50.163 50.1616 80.000 80.0000 80.000 80.0000 

f 2 94.3313 94.3279 94.142 94.1414 93.190 93.1913 40.000 40.0000 40.000 40.0000 

f 3 −6.6691 −6.6699 −6.688 −6.6884 −7.195 −7.1948 −40.000 −40.0000 −10.000 −10.0000 

f 4 43.0560 43.0551 42.974 42.9743 41.494 41.4934 40.000 40.0000 40.000 40.0000 

f 5 4.0015 3.9993 4.035 4.0334 4.535 4.5352 42.512 42.5207 22.839 22.8460 

f 6 5.3353 5.3353 5.352 5.3527 5.782 5.7816 37.642 37.6375 21.616 21.6090 

 

convergence histories obtained using NN with the materials MAT3 and MAT4. One again shows that the convergence speed 

is high at initial epochs and quickly stabilizes after 250, and 500 epochs for the respective materials. 

Fig. 10 shows the structural responses obtained from changing the external force between −200N and 200N. Note that 

when the applied load P is in the range from −120 N to −50 N, the deflection and energy decrease suddenly, and the member

forces increase. It indicates that the proposed approach can predict the snap-though of structures. 
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Fig. 9. The convergence histories of the loss function for the 6-bar truss with the materials MAT3 and MAT4. 

Table 8 

Comparision of joint displacement results for the 31-bars truss with different algorithms and various materials. 

Disp no. (cm) MATA MATB MATC 

PEMP [17] ILM [17] ALSM [18] Present PEMP [17] ILM [17] ALSM [18] Present ILM [17] ALSM [18] Present 

v 2 −49.0250 −49.4760 −49.5110 −49.5115 −50.2590 −50.7820 −50.7920 −50.7922 −35.9990 −49.5160 −35.9625 

v 3 −87.3740 −87.5870 −87.3880 −87.3888 −89.5110 −89.5920 −89.5710 −89.5710 −63.4660 −87.3960 −63.4037 

v 4 −94.1930 −94.2510 −94.0710 −94.0710 −95.8230 −95.7800 −95.7530 −95.7536 −66.2580 −94.0800 −66.1736 

v 5 −73.8380 −74.0970 −74.0530 −74.0530 −75.0940 −75.3490 −75.3550 −75.3554 −52.9870 −74.0600 −52.9275 

u 8 47.9770 48.5100 48.5390 48.5397 47.9750 48.5820 48.5830 48.5835 32.4500 48.5440 32.4115 

v 9 −53.5500 −52.3870 −51.8250 −51.8259 −54.7240 −53.2240 −53.0710 −53.0708 −37.0310 −51.8300 −36.8826 

v 10 −87.9930 −87.8630 −87.5170 −87.5176 −89.8660 −89.5490 −89.4520 −89.4522 −62.3390 −87.5250 −62.2022 

v 11 −94.3830 −94.4190 −94.2040 −94.2042 −96.0290 −95.9450 −95.8990 −95.8988 −66.4220 −94.2130 −66.3187 

v 12 −75.5780 −75.2380 −74.9540 −74.9539 −76.8780 −76.3420 −76.2790 −76.2791 −53.4150 −74.9610 −53.3082 

�p (t.m) – – −114.7 −114.7019 – – −119.3 −119.2682 – −104.6 −107.6307 

Table 9 

Comparision of member forces for the 31-bars truss with different algorithms and various materials. 

Forces (t) MATA MATB MATC 

PEMP [17] ILM [17] ALSM [18] Present PEMP [17] ILM [17] ALSM [18] Present ILM [17] ALSM [18] Present 

f 2 442.80 444.60 443.11 443.0873 442.30 440.90 441.31 441.3054 430.00 443.11 428.9959 

f 3 514.80 509.90 512.61 512.5867 512.50 507.10 510.63 510.6323 500.70 512.61 501.2984 

f 4 397.60 397.00 397.82 397.7927 397.90 396.40 397.93 397.9342 397.20 397.82 397.3081 

f 5 278.10 278.60 278.61 278.5943 278.30 278.50 278.76 278.7565 277.30 278.61 277.0117 

f 8 −430.70 −432.50 −431.67 −431.6603 −430.70 −434.20 −433.19 −433.1843 −437.30 −431.67 −436.8997 

f 9 −504.80 −511.60 −509.98 −509.9564 −506.90 −515.30 −511.94 −511.9359 −520.40 −509.98 −519.4853 

f 10 −389.90 −392.10 −392.08 −392.0528 −389.70 −393.20 −392.09 −392.0928 −392.00 −392.08 −391.5264 

f 11 −278.00 −278.30 −278.49 −278.4798 −277.90 −278.60 −278.47 −278.4709 −278.70 −278.49 −278.6257 

f 20 −203.00 −202.60 −202.72 −202.7261 −203.30 −203.10 −203.32 −203.3112 −210.50 −202.72 −210.7070 

f 27 204.70 207.40 206.15 206.1441 205.00 210.00 208.42 208.4275 215.00 206.15 214.5896 

 

 

 

 

 

4.1.3. Thirty-one-bar truss 

In the third example, the analysis problem of the 31-bar planar truss is investigated. This issue was previously addressed 

by Toklu [18] and Ohkubo [17] . The geometry, dimensions, loads, boundary conditions, and finite element representation are 

depicted in Fig. 11 . The cross-sectional area of all members is 100 cm 

2 . Three types of materials including MATA, MATB, and

MATC are considered for combining geometric and material nonlinearities. The network configuration, as shown in Table 1 , 

is built to train the model. 

As previously investigated examples, the analysis results gained by the presented work are reported in Tables 8 and 9 for

comparison with other algorithms. It is easily seen that the minimum energy, displacements, and member forces obtained 

by NN show a strong agreement for both MATA and MATB materials. Meanwhile, for MATC material, the NN results are

very close to ILM [17] , and better than ALSM [18] when the optimal energy ( −107.6307 t.m) is smaller than ALSM ( −104.6

t.m). Note, however, that the optimal energies of three types of materials are similar together. It is easily explained that the

stress-strain relationship curves of different materials are quite analogous. Fig. 12 displays the convergence curves of NN for 
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Fig. 10. Potential energy, deflection, and the first member force with various external force levels for the 6-bar truss with different materials. 
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Fig. 11. A 31-bar planar truss structure. 

Fig. 12. The convergence histories of the loss function for the 31-bar truss with different materials. 

Table 10 

Loading conditions for the 25-bar space truss with geometrical nonlinearity. 

Node Case 1 (kN) Case 2 (kN) Case 3 (kN) 

F x F y F z F x F y F z F x F y F z 

1 0 80 −20 800 0 −200 800 800 −200 

2 0 −80 −20 −800 0 −200 0 0 0 

 

 

 

 

 

 

 

 

 

 

different materials. From this graph, we can see that MATC and MATB create the most rigid and flexible structure under this

loading, respectively. 

4.2. Geometrical nonlinearity 

4.2.1. 25-bar space truss 

Next, a space truss with 25 members illustrated in Fig. 13 is investigated for the geometrically nonlinear analysis. All 

members are assigned to MAT5 with the same linear elastic modulus 2 × 10 5 N/mm 

2 and the same cross-sectional area

10 mm 

2 . Three loading cases given in Table 10 are considered. In addition, a NN (3-50-3) is constructed for the training

stage with 10 0 0 epochs. 

A comparison of the analysis results obtained by the present study and other methods [16] are reported in Tables 11 and

12 . From the data in these tables, the gained results are quite close to each other in all loading cases. However, the differ-

ences between HS, PSO, and this work are represented by the relative error with respect to the FEM solution, as shown in

Table 13 . More specifically, the maximum error of the NN is bounded and less than 0.5 % , while HS and PSO gained up to

6.5777 % and 5.3105 % , respectively. Furthermore, the average error of the present method is the smallest and less than 0.05 % .

On the other hand, it only requires 10 0 0 evaluations to converge for all loading cases, while HS [15] takes 10 0,0 0 0 for all

cases and PSO [16] takes 10 0 0, 20,0 0 0, and 50,0 0 0 for each case, respectively. The above experimental results have revealed

that the present approach can significantly improve the convergence rate compared with other methods but still ensuring 

the quality of solution. 
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Table 11 

Comparison of displacements for 25-bars truss with various loading conditions. 

Disp no. (mm) Case 1 Case 2 Case 3 

HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present 

u 1 −0.076 0.06 0.000 0.0000 1257.533 1260.63 1261.101 1261.0713 2522.412 2521.86 2522.974 2522.9897 

v 1 37.910 38.01 37.847 37.8463 −527.509 −529.80 −528.823 −528.6810 1840.283 1839.88 1840.856 1840.8893 

w 1 −37.214 −37.27 −37.199 −37.1997 −455.548 −455.35 −456.667 −456.7458 −3078.900 −3076.40 −3083.146 −3083.3000 

u 2 −0.064 0.06 0.000 0.0000 −1264.620 −1261.15 −1261.101 −1261.1061 2437.300 2435.57 2441.255 2441.4587 

v 2 −37.766 −37.68 −37.847 −37.8472 529.739 529.20 528.823 528.6903 2522.971 2522.31 2523.148 2523.1187 

w 2 −37.153 −37.16 −37.199 −37.1991 −457.905 −455.38 −456.667 −456.7199 −1435.857 −1433.56 −1441.611 −1441.8916 

u 3 0.892 0.86 0.867 0.8669 −48.858 −47.50 −48.610 −48.7118 −393.940 −393.83 −394.610 −394.6388 

v 3 −1.731 −1.73 −1.744 −1.7441 −288.344 −287.03 −288.313 −288.4180 −371.211 −371.22 −371.344 −371.3444 

w 3 −16.342 −16.45 −16.392 −16.3924 −362.120 −361.33 −362.743 −362.8435 −904.675 −903.69 −905.218 −905.2232 

u 4 0.924 0.88 0.867 0.8668 −203.107 −203.19 −202.750 −202.7069 579.074 579.02 579.039 578.9871 

v 4 1.750 1.76 1.744 1.7444 −296.619 −295.57 −296.792 −296.8928 198.927 198.35 199.088 199.0949 

w 4 −16.355 −16.38 −16.392 −16.3914 −67.535 −68.84 −68.466 −68.4153 44.972 45.45 44.423 44.4499 

u 5 −0.822 −0.85 −0.867 −0.8669 48.774 47.10 48.610 48.7141 1013.812 1012.54 1015.303 1015.3925 

v 5 1.751 1.78 1.744 1.7444 288.714 286.57 288.313 288.4188 1037.329 1036.29 1038.580 1038.6544 

w 5 −16.402 −16.35 −16.392 −16.3913 −363.583 −361.26 −362.743 −362.8326 −353.069 −351.08 −356.179 −356.4052 

u 6 −0.844 −0.87 −0.867 −0.8669 202.232 202.95 202.750 202.7087 407.347 406.51 408.348 408.3932 

v 6 −1.746 −1.70 −1.744 −1.7443 297.259 295.18 296.792 296.8958 802.637 802.21 803.160 803.1612 

w 6 −16.430 −16.40 −16.392 −16.3922 −69.186 −68.67 −68.466 −68.4220 −36.622 −36.68 −36.688 −36.6542 

�p (kN.m) −3.7645 −3.7645 −3.7645 −3.7645 −1444.60 −1444.60 −1444.60 −1444.59 −2860.50 −2860.50 −2860.50 −2860.49 
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Table 12 

Comparison of member forces for 25-bars truss with various loading conditions. 

Forces (kN) Case 1 Case 2 Case 3 

HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present 

f 1 75.676 75.690 75.693 75.6935 692.590 691.627 692.496 692.5688 107.640 107.691 106.578 106.5109 

f 2 3.915 3.902 3.893 3.8928 −334.408 −334.677 −334.607 −334.5806 273.603 273.432 274.288 274.3303 

f 3 3.883 3.869 3.893 3.8940 73.046 73.231 72.764 72.7525 −310.372 −310.660 −310.686 −310.7146 

f 4 3.890 3.898 3.893 3.8927 72.343 73.245 72.764 72.7250 247.023 247.501 246.394 246.3438 

f 5 3.885 3.881 3.893 3.8938 −334.711 −334.761 −334.607 −334.5647 −70.532 −70.574 −70.015 −69.9877 

f 6 −13.844 −13.879 −13.883 −13.8831 275.294 275.049 274.675 274.6401 −10.172 −10.110 −10.677 −10.7257 

f 7 −13.875 −13.874 −13.883 −13.8832 −189.137 −189.519 −189.233 −189.2128 359.301 359.219 359.449 359.4599 

f 8 −13.899 −13.909 −13.883 −13.8829 −189.279 −189.291 −189.233 −189.2280 187.014 186.599 187.700 187.7289 

f 9 −13.894 −13.907 −13.883 −13.8830 273.927 275.003 274.676 274.6107 471.844 471.760 472.059 472.0688 

f 10 1.736 1.730 1.734 1.7338 −132.535 −132.998 −132.732 −132.7007 −110.993 −111.052 −111.426 −111.4535 

f 11 1.745 1.730 1.734 1.7337 −132.868 −132.948 −132.732 −132.7026 −180.275 −179.696 −180.523 −180.5569 

f 12 −3.482 −3.490 −3.489 −3.4885 35.618 35.618 35.767 35.7734 −26.908 −26.821 −26.811 −26.8122 

f 13 −3.497 −3.480 −3.489 −3.4887 35.798 35.781 35.767 35.7730 −106.789 −106.819 −106.798 −106.8088 

f 14 −3.376 −3.413 −3.489 −3.4851 −52.294 −51.883 −52.346 −52.3840 −260.641 −260.427 −260.940 −260.9510 

f 15 −3.412 −3.402 −3.489 −3.4851 −125.339 −125.189 −125.277 −125.2644 −237.250 −236.904 −237.647 −237.6528 

f 16 −3.366 −3.385 −3.489 −3.4849 −125.143 −125.368 −125.277 −125.2618 238.850 238.851 238.741 238.7296 

f 17 −3.412 −3.385 −3.489 −3.4848 −52.509 −51.825 −52.346 −52.3824 −177.597 −177.046 −178.359 −178.4138 

f 18 −4.657 −4.660 −4.656 −4.6558 116.226 115.587 116.025 116.0641 −125.783 −125.457 −125.978 −125.9688 

f 19 −4.643 −4.664 −4.656 −4.6560 −174.651 −174.273 −174.822 −174.8633 −248.091 −247.944 −248.093 −248.0878 

f 20 −4.654 −4.656 −4.656 −4.6558 −174.651 −174.273 −174.822 −174.8608 −190.078 −189.732 −190.717 −190.7642 

f 21 −4.662 −4.643 −4.656 −4.6560 115.946 115.450 116.025 116.0639 332.335 332.074 332.665 332.6797 

f 22 −7.378 −7.385 −7.367 −7.3677 −46.776 −45.834 −46.168 −46.1846 −52.549 −52.744 −52.285 −52.2527 

f 23 −7.355 −7.397 −7.367 −7.3678 −54.925 −55.429 −55.264 −55.2386 −106.707 −106.436 −106.579 −106.5696 

f 24 −7.365 −7.361 −7.367 −7.3672 −45.581 −45.918 −46.168 −46.1814 −50.752 −50.697 −50.960 −50.9357 

f 25 −7.358 −7.333 −7.367 −7.3672 −55.421 −55.700 −55.264 −55.2332 542.045 541.876 542.082 542.0712 
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Fig. 13. Schematic of a 25-bar space truss. 

Table 13 

Comparison of error percentage of different algorithms with FEM for the 25-bar truss. 

Error (%) Case 1 Case 2 Case 3 

HS PSO Present HS PSO Present HS PSO Present 

Displacements 

Min 0.0403 0.0488 0.0002 0.0108 0.0039 0.0004 0.0060 0.0033 0.0001 

Max 6.5744 2.5229 0.0257 1.3598 3.1064 0.2142 1.2358 2.3119 0.0921 

Mean 1.2672 0.8013 0.0093 0.3311 0.5678 0.0490 0.2210 0.3745 0.0167 

Member forces 

Min 0.0215 0.0000 0.0000 0.0136 0.0209 0.0027 0.0008 0.0084 0.0020 

Max 3.5254 2.9808 0.1201 1.3169 0.9953 0.0725 4.7298 5.3105 0.4561 

Mean 0.5981 0.5942 0.0244 0.2755 0.3451 0.0270 0.4321 0.5405 0.0353 

Table 14 

Comparison of deflection results for the 52-bar dome truss obtained by differ- 

ent algorithms. 

Disp no. (mm) Mai et al. [26] FEM Present Error (%) 

w 1 1.328 1.3276 1.3218 0.436 

w 2 0.720 0.7202 0.7251 0.677 

w 6 10.000 10.0089 10.0199 0.109 

w 7 10.000 10.0078 9.9813 0.265 

�p (kN.cm) – −599.3685 −599.3687 0.000 

 

 

 

4.2.2. 52-bar dome truss 

A 52-bar dome truss shown in Fig. 14 is investigated for the next geometrical nonlinear analysis. The optimal cross- 

sectional area of members obtained by Mai et al. [26] is used to perform this analysis, and they are classified into 8 groups,

where A 1 = A 2 = A 3 = A 4 = A 8 = 2 cm 

2 , A 5 = 16.672 cm 

2 , A 6 = 17.585 cm 

2 , and A 7 = 2.519 cm 

2 . All members are

made of a linearly elastic material MAT6 with Young’s modulus E = 210 0 0 kN/cm 

2 . The system is subjected to a downward

concentrated load P z = 150 kN at joints 6–13. The network configuration for training is mentioned in Table 1 . 
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Fig. 14. 52-bar dome space truss structure. 

 

 

 

 

As the previously indicated problems, Tables 14 and 15 summarize the analysis results achieved by the present study and

other methods. Firstly, it can be observed that the minimum energy ( −599.3687 kN.cm) acquired by NN is smaller than FEM

( −599.3685 kN.cm). Otherwise, the differences of (0.109–0.677)% for displacement and (0.052–1.430)% for member force are 

observed compared with FEM. Although the maximum relative error of the member force is 1.43%, it should be noted that

the accuracy of the FEM solution depends on the choice of control parameters used in the nonlinear solution technique [26] .

Fig. 15 shows the potential energy convergence history obtained by NN. It indicates that the network rapidly converges in 

the first 200 epochs, and approaches the optimal solution after 400 epochs. 
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Fig. 15. The convergence history of the loss function for the 52-bar dome truss. 

Table 15 

Comparison of member forces for 52-bars truss obtained by different 

algorithms. 

Force (N) Connection FEM Present Error (%) 

f 1 1–2 0.0000 0.0000 0.790 

f 5 2–3 1.0506 1.0391 1.095 

f 9 2–6 2.9809 2.9383 1.430 

f 12 2–7 2.9809 2.9383 1.430 

f 21 6–7 −174.8488 −174.7141 0.077 

f 29 6–14 −185.2631 −185.1668 0.052 

f 30 7–15 −194.1764 −193.9626 0.110 

f 37 6–15 −18.3382 −18.3529 0.080 

f 45 7–14 −14.6041 −14.5690 0.241 

Table 16 

Comparison of member forces for the 10-bar truss with different algorithms and various materials. 

Forces ( ×10 3 kg) MATA MATB MATC 

ILM [18] CEMP [18] Present ILM [18] CEMP [18] Present ILM [18] CEMP [18] Present 

f 1 −299.800 −299.600 −299.7776 −299.900 −300.300 −299.9140 −299.700 −299.700 −299.7381 

f 2 −110.400 −111.300 −110.3785 −104.800 −104.500 −104.8231 −106.900 −107.300 −106.8638 

f 3 −141.700 −142.000 −141.7359 −141.500 −140.900 −141.5430 −141.800 −141.900 −141.7916 

f 4 141.100 140.900 141.1068 141.300 141.900 141.2998 141.100 141.000 141.0511 

f 5 −10.200 −11.900 −10.1559 −4.700 −4.900 −4.7371 −6.600 −7.000 −6.6020 

f 6 −126.700 −124.100 −126.7441 −134.600 −135.000 −134.6006 −131.700 −131.200 −131.7144 

f 7 156.100 158.700 156.0986 148.200 147.800 148.2421 151.100 151.700 151.1283 

f 8 89.600 87.800 89.6217 95.200 95.500 95.1767 93.100 92.700 93.1363 

f 9 300.200 300.400 300.2224 300.100 299.700 300.0860 300.300 300.300 300.2618 

f 10 89.600 87.800 89.6216 95.200 95.500 95.1769 93.100 92.700 93.1362 

�p (kg.m) – – −8776.2407 – – −9672.8855 – – −14544.8473 

 

 

 

 

4.3. Material nonlinearity 

In this section, two examples are considered to estimate the efficiency and reliability of the proposed approach for the 

material nonlinear analysis. Three types of material models, namely MATA, MATB, and MATC, are used here. All members 

have the same cross-sectional area 100 cm 

2 . The analysis results obtained are compared with ILM and CEMP [18] . The

network architectures, as shown in Table 1 , are defined to train the models. 

4.3.1. 10-bar planar truss 

A 10-bar planar truss is considered to evaluate the material nonlinear behavior. The geometry, loading, and boundary 

conditions are illustrated in Fig. 16 . The final results, including the energy, member forces, and errors, are summarized 

in Tables 16 and 17 . It can be observed that the energy of material MATA ( −8776.241 kg.m) is larger than the MATB

( −9672.886 kg.m) and MATC ( −14544.847 kg.m), so the structure with the material model MATA results in a better de-

formation than other materials. Clearly, the member forces found by the NN are very close to the results gained by ILM and
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Fig. 16. A 10-bar planar truss structure. 

Table 17 

Comparison of error percentage of different algorithms with ILM for the 10-bar truss. 

Error (%) MATA MATB MATC 

CEMP Present CEMP Present CEMP Present 

Min 0.0666 0.0009 0.1333 0.0002 0.0000 0.0059 

Max 16.6667 0.4327 4.2553 0.7892 6.0606 0.0390 

Mean 2.5704 0.0581 0.6854 0.0929 0.8212 0.0237 

Table 18 

Comparison of member forces for the 21-bar truss with different algorithms and various materials. 

Forces ( ×10 3 kg) MATA MATB MATC 

ILM [18] CEMP [18] Present ILM [18] CEMP [18] Present ILM [18] CEMP [18] Present 

f 1 171.200 171.300 171.1684 168.600 168.700 168.6476 158.200 158.200 158.1716 

f 2 153.400 153.300 153.3964 146.400 146.500 146.4163 123.700 123.700 123.6722 

f 6 −242.100 −242.200 −242.0716 −238.500 −238.500 −238.4932 −223.700 −223.700 −223.6901 

f 7 303.400 303.300 303.3963 298.700 298.700 298.7314 288.500 288.500 288.4732 

f 8 353.200 353.000 353.1582 355.300 355.400 355.3107 357.500 357.600 357.5358 

f 9 328.500 328.700 328.5323 330.200 330.100 330.1548 337.300 337.200 337.2644 

f 11 −204.800 −205.700 −204.7896 −192.200 −192.200 −192.2189 −216.400 −216.400 −216.3917 

f 18 −214.500 −214.600 −214.5337 −211.200 −211.700 −211.2335 −204.000 −204.000 −203.9817 

f 19 −203.700 −204.100 −203.7155 −193.200 −193.200 −193.2077 −162.800 −162.700 −162.7884 

f 21 2.800 2.900 2.8185 3.700 3.800 3.7053 13.200 13.300 13.2244 

�p (kg.m) – – −26823.3809 – – −30395.9725 – – −40341.9256 

 

 

 

 

 

 

 

CEMP. According to Ohkubo [17] , ILM outperforms the CEMP method when the complementary energy is always lower for 

each material. Hence, it is used to evaluate the efficiency of the proposed model based on the error percentage. As shown in

Table 17 , it is easily seen that the maximum relative error of the network is less than 1% while CEMP gained up to 16.6 6 67%,

and usually occurs at the 5th element. On the other hand, the mean errors are smaller than 0.1%, and this again shows the

effectiveness of the network in the nonlinear analysis. 

4.3.2. 21-bar planar truss 

The last problem done herein is to analyze a 21-bar planar truss as shown in Fig 17 . Tables 18 and 19 show the com-

parison with the results by CEMP and ILM. As the previous example, the differences in attained results of three methods

are almost small and negligible. However, the maximum relative error of our method is less than 0.6603% while CEMP is

3.5714%, and hence the accuracy of the NN is high. Furthermore, the stability is expressed by the average error which is less

than 0.1% for three material types. 
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Fig. 17. 21-bar two-span continuous truss structure. 

Table 19 

Comparison of error percentage of different algorithms with ILM for the 21-bar truss. 

Error (%) MATA MATB MATC 

CEMP Present CEMP Present CEMP Present 

Min 0.0330 0.0012 0.0000 0.0029 0.0000 0.0038 

Max 3.5714 0.6603 2.7027 0.1422 0.7576 0.1846 

Mean 0.4569 0.0744 0.3125 0.0241 0.0877 0.0279 

 

 

 

 

5. Conclusions 

In this article, an unsupervised NN framework has been successfully developed to solve the geometrically nonlinear 

analysis of inelastic truss structures. Herein, TPE is constructed as a loss function of the NN model, and it is minimized

in the training process. Accordingly, the responses of structures are found at the end of this procedure when achieving

the minimum energy. The efficiency and reliability of the proposed method are demonstrated through several numerical 

examples including geometric nonlinearity, material nonlinearity, and dual nonlinearities. Numerical results pointed out that 

the nonlinear behavior of truss structures can be simply and accurately solved by the proposed approach without utilizing 

any incremental-iterative methods in the FEM. One of the interesting things of this paradigm is that its learning possibility 

is only relied upon the set of the nodal coordinates. Hence, the obtained results are independent of the sampling techniques.

Furthermore, there are no complex sensitivity analyses because of employing the automatic differentiation in the paradigm’s 

framework. With those outstanding features, the proposed methodology is promising to provide a new route to handle 

complex problems in nonlinear structural analysis. However, there have been still an unanswered question about how to 

determine the optimal architecture network. This will be the next topic of our future investigation. 
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