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In this study, a robust and simple unsupervised neural network (NN) framework is pro-
posed to perform the geometrically nonlinear analysis of inelastic truss structures. The core
idea is to employ the NN to directly estimate nonlinear structural responses without utiliz-
ing any time-consuming incremental-iterative algorithms as those done in standard finite
element method (FEM). To achieve such an objective, the loss function built via the total
potential energy principle under boundary conditions (BCs) is minimized in the suggested
NN model whose weights and biases are considered as design variables. In our computa-
tional framework, spatial coordinates of truss nodes are treated as input data, whilst corre-
sponding displacement degrees of freedom are taken account of output. At the beginning
of each training step, feedforward is performed to get the predicted displacement field, and
it is used to derive the loss function based on the physical law. Then, back-propagation is
applied to update the parameters of the network. This adjustment, which is the so-called
learning process, is repeated until the potential energy is minimized. Once the network is
properly trained, the mechanical responses of inelastic structures can be easily obtained.
The suggested methodology is also extremely simple to implement, while the unlabeled
data is available, small in size, independent of sampling techniques, and without finite el-
ement analyses (FEAs). Several benchmark examples regarding geometrical and material
nonlinear analysis of truss structures are tested to show the effectiveness and reliability of
the proposed paradigm. Obtained outcomes indicate that the developed NN framework is
robust and can be extended to apply for other structures.
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1. Introduction

Most mechanical behavior of structures is nonlinear in one way or another [1,2]. Due to the nonlinear changes of ge-
ometrical and material properties, designing structures under such responses becomes more complex and is required in
analysis to obtain more accurate behavior [3,4]. A variety of algorithms for solving nonlinear structural problems have
been proposed during the last few decades, and they are generally classified into two groups [5]. In the first one, the
stiffness-based approach derived from the FEM employs incremental-iterative procedures such as incremental load method
(ILM), Newton-Raphson, Quasi-Newton, Arc-length techniques, and so on, to update the stiffness matrix concerning the
changes in the stress-strain relation and geometry of the structure. Owing to the salient advantanges of this methodol-
ogy, it has been successfully applied in various nonlinear problems [6-12]. Nevertheless, the implementation of this ap-
proach still requires a large amount of numerical simulation works, depending on controlling parameters of the nonlinear
incremental-iterative techniques. To circumvent this bottleneck, an alternative approach based on the minimum energy prin-
ciple in combination with optimization schemes was developed to allow the direct determination of nonlinear responses
without the requirement of any incremental-iterative strategies as those implemented in FEM [13]. According that core
idea, several metaheuristic algorithms known as gradient-free methods have been successfully applied for the above issue,
such as genetic algorithm (GA) [14], harmony search (HS) [15], and particle swarm optimization (PSO) [16] etc. Although
these algorithms have the ability to search a near global optimum solution, they often require a larger number of evalu-
ation functions and are of a relatively slow convergence speed. Besides, the gradient-based optimization algorithms have
also been successfully applied in this context. For instance, Ohkubo et al. [17] developed a modified sequential quadratic
programming algorithm for the structural analysis by solving potential energy minimization problem (PEMP) or comple-
mentary energy minimization problem (CEMP). In addition, an adaptive local search method (ALSM) was also released by
Toklu [18]. Despite the fact that their convergence speed is fairly high, these methods always demand the compulsory cal-
culation of derivative information of the energy function with respect to the displacements. This performance is one of
the main difficulties in solving the problem, even imposible in many cases. Therefore, the NN with the ability to approx-
imate any nonlinear function and its automatic differentiation has emerged as an efficient alternative tool to tackle this
task.

In recent years, machine learning (ML) has attained remarkable success in many fields to help decision-making, e.g. speed
recognition, industrial automation, medical diagnoses, material informatics, etc. Among ML models, NNs have attracted at-
tention in computational mechanics such as structural analysis [19-21], materials sciences [22,23], fluid mechanics [24,25],
structural optimization [26-29], structural healthy monitoring [30-34], fracture mechanics [35,36], and so on. As indicated
by Li et al. [37], NN-based approaches can be categorized as purely data-driven and physics-informed ones. Accordingly,
the data-driven methodology is often used to build surrogate models, while the other is employed to construct approxima-
tion spaces. The main difference between them is the training data which contains both input and expected output data
for data-driven approach while the other only requires input data. More concretely, in structural analysis applications, the
output data are the structural responses including displacement, stress, strain, and so on, whose values are often obtained
through numerical methods in FEAs. In recent times, the data-driven approach has been successfully applied to solve com-
plex structural analysis problems including linear [37-41] and nonlinear [42-47]. But they depend strongly on the numerical
simulation results as well as size data [37,48]. Hence, it has not been an appropriate numerical tool for the structural anal-
ysis, especially for nonlinear problems. On the contrary, to overcome these difficulties, the physics-informed ML model is
developed based on the governing physical laws which are integrated into the unsupervised learning process. It is worth
mentioning that its training data only demands input data, and it contains the known output information about the prob-
lem. Indeed, this is one of the major strengths of this approach owing to the fact that it allows to establish an efficient
NN-based computational framework without utilizing any conventional numerical simulations such as FEA. With this re-
gard, there are two common approaches concerning the choice of loss function based on the energy and residual of partial
differential equations (PDEs). And they have been successfully applied in several recent studies on structural analysis and
fluid mechanics [49-54]. But this paradigm also depends significantly on the resolution of samples, sampling techniques, as
well as the way of estimating a suitable training data size [37]. Furthermore, it has still not been yet utilized for geometri-
cally nonlinear analysis of inelastic truss structures thus far.

Based upon the above-discussed investigations, this study aims at proposing an unsupervised NN model for geometrically
nonlinear analysis of inelastic truss structures. Unlike other frameworks in the available literature, the training data of the
proposed model is a set of the spatial coordinates of all joints which are easily collected from the connectivity information
of the structure without any specific sampling techniques, as well as its small size. The training process aims to find the
displacement field such that the total potential energy (TPE) is minimized. To do this, the feedforward (FF) as well as BCs
are employed and applied to attain the predicted displacement field. Relied on these predictions and physical laws, the TPE
is built as a loss function, and its gradients concerning parameters are computed by back-propagation (BP) to adjust weights
and biases of the network. This process is repeated until the obtained minimum energy. Once the network is trained, it
not only obtains the NN’s optimal parameters but also identifies the nonlinear structural responses as soon as the training
process ends without utilizing any incremental - iterative algorithms or FEAs. The efficiency and reliability of the presented
approach are also investigated through several numerical examples.

The rest of this work is organized as follows. Section 2 provides the theoretical formulation of the TPE of truss structures.
Next, a novel unsupervised NN-based approach is suggested in Section 3. In Section 4, several numerical examples are
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Fig. 1. Deformation of a space truss element.

investigated to demonstrate the efficiency and robustness of the presented method. Finally, crucial conclusions are outlined
in Section 5.

2. Theoretical formulation

Structural analysis aims to obtain the responses for the equilibrium configuration under the action of external loads. In
this section, the analysis of truss structures including linear and nonlinear behavior is described by minimizing the TPE
[10,55]. Let us consider a truss-like structure that consists of n truss members and m nodes. Then the TPE of the system II,
including the strain energy U and external work W can be expressed as [55]

M,=U+W, 1)
in which
n
U= el (2)
k=1
W=—Pu, 3)
&k
e = /0 ox(&r)dey, (4)

where ey, L, and Aj are the strain energy density, length, and cross-sectional area of the kth member; u is the vector of
displacements at nodes; P denotes the vector of external forces; ¢, and o} are strain and stress of the kth member, and
o (¢) expresses the stress-strain relation for the material of member.

In order to achieve the strain field, a space truss element with its initial configuration Ly and current one L. is considered
as shown in Fig. 1. It is easily to compute Ly and L. of the element via coordinates of nodes (xi, Yis Zis Xj, Vi zj) and
displacement field (ui, v, W, uj, v, wj). For more details, interested readers are suggested to consult Ref. [55,56].

Here, two frequently used strain models including engineering and Green strains for large displacement and small strain
analysis are adopted in this work [56]. It should be noted that the stress-strain curve o (¢) can be linear, piecewise linear
curve, or nonlinear, which depends on material properties and is assumed to be completely known for a given material
type. Hence, if the displacements of member ends are determined, the strain and strain energy density of each member can
be easily estimated by the integral Eq. (4).

According to the principle of minimum potential energy, the nodal displacements vector u are considered as unknown
solutions and are determined by minimizing the TPE with BCs. Once the displacement field is found, the other structural
responses can be completely determined by the constitutive equations.

3. Unsupervised learning-based approach framework
In this section, an unsupervised learning-based framework is developed to resolve the nonlinear analysis of truss struc-
tures. A flowchart of the overall proposed algorithm is illustrated in Fig. 2 where the parameters 6 including weights and

biases of the network are design variables. According to this scheme, the network is set first up with the initial weight
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Fig. 2. The whole process of an unsupervised learning-based framework for geometrically nonlinear analysis of inelastic truss structures.

and bias values according to the normal distribution criterion. The coordinates of all nodes in the structure are used as the
input training data, while the corresponding displacements are defined as the outputs obtained by the FF process. Based
on these outputs, loads, BCs, and physical laws, the TPE including the strain energy and external force is established as the
loss function which is minimized by adjusting weights and biases of the network. To achieve this goal, BP is employed to
automatically calculate the sensitivity of the loss function with respect to the parameters, whereby they will be updated.
The above computation is iterated and repeated many times, and it is called the learning process. Once the network is prop-
erly trained, the results in the context of nonlinear structural analysis can be found with minimum energy. In general, the
presented approach consists of three main components, namely training data, NN, and loss function. They are represented
in greater detail in the following sub-sections.

3.1. Training data

In contrast to most of the previous approaches which utilized supervised learning models [42,57,58], the framework
presented here relies on unsupervised learning. The main distinction between them is that the output data is not given in
unsupervised learning. In other words, the responses of the structure including displacement, strain, stress, member force,
etc. are not included in the training data. It means that we only have input data including a set of coordinates (x;,y;,z;) of
all structural nodes for the learning process. Hence, the training data is easily obtained from the geometry of the structure
and completely independent of sampling techniques. Additionally, its size is small (m x 2) and (m x 3) for planar and space
truss structures, respectively. Here m denotes the number of nodes, while 2 or 3 implies the number of spatial coordinates
for 2- or 3-dimensional truss.

3.2. Neural network

NN is one of the machine learning models used to represent a set of mathematical relationships between the inputs
and outputs through a training process as the working way of the human brain. For illustration, a fully connected NN
with 3 layers is depicted in Fig. 3. Therein, the input layer is known as the first layer which consists of three neurons
corresponding with the spatial coordinates (x,y,z), the second layer as hidden layer consists of mj, neurons which depends
on the complexity of the application, and the last layer is called the output layer with three neurons which corresponds to
the predicted displacements (i, ¥, w). And the neurons of the present layer are connected to all units in the previous layer
via the parameters of the NN which consists of weights WO and biases b"”, respectively.

To train the network, both FF and BP processes are employed to adjust the parameters of the NN and are repeated over
and over until the loss converges to a minimum value. Specifically, in the FF process, a mapping from input to output nodes
can be expressed as I: R3 — R3. The data is transmitted from the first layer to the last layer by the transformations. Hence,
the relation between the input and output of each layer is expressed as

input layer 0° = [x,y,2] eR3,
hidden layer: &' = f;(W'd" +b') e R™,
output layer : 8* = fo(W?8' +b®) = [0, 7, W] e R’ (5)

where f1(.) and f>(.) are in turn the activation function for hidden and output layers, which supports the network to learn
the nonlinear relationship between input and output, and make accurate predictions. Several common choices include Linear,
ReLU, LeakyReLU, Sigmoid, Softmax, and Tanh. ' and 6% denote the output of the hidden and output layers, respectively.
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Fig. 3. Architecture of a fully-connected multi-layer network.

To identify optimal parameters, an optimization process, which is the so-called network training, is performed to mini-
mize the loss function £. To do this, BP is required to obtain the gradient information of the loss with respect to the weights
and biases. And then, they are updated in the direction of the gradient descent, as expressed below

oL
1l !
t+ qu = prq — ”afwgq’
0L
r+lb1p — fb’p -7 aeb, for 1<l<2, (6)

where 7 is the learning rate; p and q are the number of neurons in the Ith and (I — 1)th layer, respectively; t denotes the
iteration index. Finally, the parameters will converge to the minimum loss value after an iterative process.

3.3. Loss function

As mentioned above, the outputs of the NN are the displacements expressed by the parameters including weights and
biases of the network. Then, the TPE is computed by a sum of the strain energy and external work based on the outputs,
loads, and BCs. And this term serves as a loss function which is minimized in the training process. Its mathematical expres-
sion is given as follows

£(6) =u(a(8)) +w(a()). (7)
where 1i is the predicted displacement vector; € is the parameter vector including weights and biases of the network.

It should be noted that the loss function only contains the predicted displacements and this is an advantage of algorithm
based on unsupervised learning. At the same time, it is easily seen that instead of solving the nonlinear analysis problem by
using incremental-iterative methods, we now turn to minimize the loss function by training to find the optimal parameters
6* of the NN.

6* = argmin (£(6) ). (8)
]

It is also worth mentioning that the sensitivity of the loss function to parameters can be easily and automatically cal-

culated by using NN’s back-propagation. In this work, the training of the network is terminated when either the maximum

number of epoch reaches or the norm of the gradient value is less than a threshold value of 0.01 [59]. Once the network is
trained, the displacement field and corresponding structural responses can be found.

4. Numerical experiments

In this section, several numerical examples are explored to demonstrate the efficiency of the proposed approach for non-
linear analysis of truss structures including geometric nonlinearity, material nonlinearity, and dual nonlinearities. For that
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Fig. 5. Schematic of a two-bar planar truss.

purpose, the obtained results from the presented work are compared with those of other studies available in the literature.
In all considered examples, the number of units in the input and output layers is equal to 2 or 3 for 2D or 3D problems,
respectively. Meanwhile, Grid search and trial error methods are used to determine the number of neurons in the hidden
layers. For training, an Adam optimizer is employed to update the parameters of the network with the learning rate 0.01
[60]. Tanh and Linear are the activation functions chosen for the hidden and output layers, respectively. All experiments are
implemented on a desktop computer with Core i5-8500 CPU of @3.0 GHz and 16 GB RAM.

4.1. Material and geometrical nonlinearities

In this part, seven different types of materials are considered for geometrically nonlinear analysis of inelastic truss struc-
tures with the stress - strain relationships, as depicted in Fig. 4. In which, the first group includes four type of materials
which are denoted from MAT1 to MAT4 and built based on piecewise linear curves M1-M4 as shown on Fig. 4a. Therein,
the strain-stress relation of MAT4 is unsymmetrical with respect to M4 in compression and M3 in tension while the others
are symmetrical. In the second group, three types of materials MATA, MATB, and MATC are the symmetrical stress-strain
relations in tension and compression, and obtained from piecewise linear curves of MA, MB, and MC, as depicted in Fig. 4b.
It should be noted that the relation given for MATC is defined by ¢ =6 x 101962 + 9 x 10~70.

4.1.1. Two-bar truss

A two-bar truss subjected to a vertical load P = 100 N at the middle point is investigated as the first example for the
nonlinear analysis, as depicted in Fig. 5. The cross-sectional area and length of all members are set as A=1 mm? and
Lo = 1000 mm, respectively. Two types of materials, namely MAT1 and MAT3, are considered to evaluate the effects of only
geometric nonlinearity and both material and geometric nonlinearities. According to Ref. [18], the analytical solution for
geometrical nonlinearity is given as follows

v, = Lptan (0),

fi=F= sy (9)
tan (6)(1 - cos (0)) = 5=

Firstly, several different combinations of activation functions and optimizers are adopted to identify the best combination
under the same network architecture (2-10-2) with linear activation function in the output layer for material MAT1. The

relative errors of the exact and the predicted potential energies are reported in Table 2. It can be seen from the data in this
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Table 1

Type of material, number of hidden neurons, and epoch for different problems.
Problem Material type Network architecture Epoch
2-bar truss MAT1, 3 (2-10-2) 500
6-bar truss MAT1, 2 (2-10-2) 500

MAT3, 4 (2-100-2) 1000

31-bars truss MATA, B, C (2-50-2) 2000
25-bar truss MAT5 (3-50-3) 1000
52-bar truss MAT6 (3-50-3) 1000
10-bar truss MATA, B, C (2-10-2) 500
21-bar truss MATA, B, C (2-10-2) 500

Table 2

Relative error of minimum TPE (10~°) with various optimizers and activation functions.

Activation function  Optimizers

Adam RMSprop  Adadelta SGD Adagrad Adamax
Softmax 1.8094  33.3622 4763840  617.8942  6451.9175  3.3428
Softplus 0.0449  73.9318 52.2400 1.5435 24.8778 0.1206
Tanh 0.0022 9.1730 5.6941 0.2552 12.1375 0.0672
Sigmoid 0.0389  10.0903 979.9133  0.1384 24.6756 0.1938
ReLU 0.0819 17.2319 250.2252  3.2209 34.0667 0.5480

Table 3
Relative error of deflection (10-7) with various neurons and hidden layers.
No. of hidden layers No. of hidden neurons
10 20 30 40 50
1 0.2236 0.7362 0.7362 1.1833 31.8947
2 2.1430 0.7362 1.6959 22.3579 84.1400
3 2.6556 5.0222 5.0222 12.2529 28.0558
4 4.0625 3.6153 1.6959 20.8905 82.7604
Table 4
Effect of different strain models for geometrically nonlinear responses of two-bar truss.
Strain va(mm) fi2 (N) IT,(kN.mm)
Exact Present Exact Present Exact Present
Engineering 79.4952 79.4952 630.9532 630.9531 -5.9590 —5.9590
Green 79.4952 79.3701 631.9484 629.9609 —5.9527 —5.9528
Log 79.4952 79.6213 629.9600 631.9538 -5.9653 —5.9653
Almansi 79.4952 79.8764 627.9799 633.9797 -5.9777 -5.9780

table that Adam is the best optimizer among all with the lowest relative errors. Meanwhile, Tanh is either the best or the
second best in the combination of the other activation functions with optimizers. The result obtained by combining Tanh
and Adam is of the smallest error (0.22 x 10~7), so they are chosen for the implementation in this work. Additionally, the
impact of varying neurons and hidden layers in the network is also investigated to assess the predicted accuracy. According
to the errors attained from Table 3, increasing the number of neurons and hidden layers can not improve the performance
of the model, and the NN architecture (2-10-2) shown in Table 1 is the best selection to solve this example.

Next, various strain models are considered to estimate their effect on the geometric nonlinear analysis. As shown in
Table 4, it is easily seen that the results achieved by the NN agree well with the analytical values for all strain models,
while the engineering strain is the best model with the small relative errors (1.58 x 10~7). Thus, it is utilized throughout
the present work.

As can be seen from Table 5, the analysis results obtained from the NN, including deflection (v,), member forces (f; ),
as well as minimum potential energy (ITp) are a very good agreement with the analytical and ALSM outcomes. The con-
vergence curve of the NN is illustrated in Fig. 6. It also indicates that the convergence speed accelerates in the early period
of epoch and approaches the optimal energy after only 150 epochs for two types of materials. In addition to considering
the effect of geometric and material nonlinearities on the structure, the variation of the external force is also investigated
here. Corresponding to this change, the behavior of the system is shown in Fig. 7, where the energies and deflections are
in keeping with previous observational studies. On the other hand, it can be seen that the material nonlinearity has a great
influence on the structural responses when the load P is greater than 50.5207(N). Hence, the obtained analysis results point
out that NN is reliable and stable for solving nonlinear problems.

338



H.T. Mai, Q.X. Lieu, J. Kang et al. Applied Mathematical Modelling 107 (2022) 332-352

p

II (kKN.mm)

0 50 100 150 200 250 300 350 400 450 500
Epoch

Fig. 6. The convergence histories of the loss function for the two-bar truss with the materials MAT1 and MAT3.

T T
300 f MATI1 MAT3 7

..... v,-Exact —V,-ALSM .
,,,,, Hp-Exact _Hp-ALSM
200 [ o V,-Present v v,-Present B
E * lIP—Presem o le—Presem
Z 100 T i et
=3 rigees el B
S |
= i
2 09 : ]
= |
g
P,
£ T Horny
< -100 - [ . i
> gy
1 -
! s
Si
-200 ) i
Q.
wl
I
(=}
L L L L L L L L L

0 20 40 60 80 100 120 140 160 180 200
P(N)

Fig. 7. Responses of the 2-bar truss structure with varying external force.

Table 5
Comparison of analysis results for two-bar truss with different materials.
MAT1 MAT3
Exact Present ALSM [18] Present
vo(mm) 79.4952 79.4952 125.9875 125.9882
f12 (N) 630.9532 630.9531 400.0000 400.0000
IT,(kN.mm) —5.9590 -5.9590 —7.0746 —7.0746

4.1.2. Six-bar truss

The next example analyzes a 6-bar planar truss structure with the geometry, finite element representation, loads, and
boundary conditions as depicted in Fig. 8. Here, members 2-4 have the same cross-sectional area of 100 mm?, while the
remaining ones are 200 mm?. In this example, material MAT1 is considered for both linear and geometric nonlinear analy-
ses. Three material types MAT2 to MAT4 are valid for material and geometric nonlinearities. This benchmark problem was
previously analyzed by Toklu [18] using ALSM. Table 1 lists the details of network architectures used to train the model.

As shown in Tables 6 and 7, the obtained solutions reveal that the presented method is highly close to those found in
literature [18]. At the same time, it is easily be seen that the results of the linear and geometric nonlinear analysis are
practically the same, so the influence of geometry changes is small for this loading. But the effect of the material and
geometric nonlinearities is significant on the response of structure, where the horizontal displacement at node 4 increases
10, 138, and 159 times for MAT2, MAT3, and MAT4, respectively. Moreover, it is also worthwhile emphasizing that the
member force of elements 1-4 reaches the yield point for MAT3 and MAT4 as the data in Table 7. Fig. 9 shows the TPE
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Fig. 8. A 6-bar planar truss structure.

Table 6
Comparison of joint displacements and energy for 6-bars truss with different solution techniques and different materials.
Disp no. (mm) Linear Nonlinear
MAT1 MAT1 MAT2 MAT3 MAT4
FEM Present ALSM [18] Present ALSM [18] Present ALSM [18] Present ALSM [18] Present
Uy 14.1497 14.1508 14.12 14.1199 139.71 139.7093 1931.60 1931.5973  2235.51 2235.5098
2 2.8427 2.8431 2.83 2.8281 28.46 28.4541 —403.79 —403.7856  387.11 387.1073
Us 0.3001 0.3059 0.30 0.3016 3.30 3.2974 1.89 1.8945 —283.55 —283.5538
Vs 2.3092 2.3104 2.32 2.3167 25.00 24.9958 88.17 88.1705 1277.18 1277.1859
IT,(kN.m) -1.061227 -1.061228 -1.059735 -1.059735 —11.27096 -11.27090 -36.75831 -36.75831 —52.09811 -52.09811
Table 7
Comparison of member forces for 6-bars truss with different solution techniques and different materials.
Forces (kN)  Linear Nonlinear
MAT1 MAT1 MAT2 MAT3 MAT4
FEM Present ALSM [18]  Present ALSM [18]  Present ALSM [18]  Present ALSM [18]  Present
f; 49.7251  49.7220 49.811 49.8106 50.163 50.1616 80.000 80.0000 80.000 80.0000
f, 943313 94.3279 94.142 94.1414 93.190 93.1913 40.000 40.0000 40.000 40.0000
f3 -6.6691 —6.6699 —6.688 —6.6884 -7.195 —7.1948 —40.000 —40.0000 —10.000 —10.0000
fs 43.0560  43.0551 42.974 42.9743 41.494 41.4934 40.000 40.0000 40.000 40.0000
fs 4.0015 3.9993 4.035 4.0334 4.535 4.5352 42.512 42.5207 22.839 22.8460
fo 5.3353 5.3353 5.352 5.3527 5.782 5.7816 37.642 37.6375 21.616 21.6090

convergence histories obtained using NN with the materials MAT3 and MAT4. One again shows that the convergence speed

is high at initial epochs and quickly stabilizes after 250, and 500 epochs for the respective materials.

Fig. 10 shows the structural responses obtained from changing the external force between —200N and 200N. Note that
when the applied load P is in the range from —120N to —50N, the deflection and energy decrease suddenly, and the member
forces increase. It indicates that the proposed approach can predict the snap-though of structures.
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Fig. 9. The convergence histories of the loss function for the 6-bar truss with the materials MAT3 and MATA4.

Table 8
Comparision of joint displacement results for the 31-bars truss with different algorithms and various materials.
Disp no. (cm) MATA MATB MATC
PEMP [17] ILM [17] ALSM [18] Present PEMP [17] ILM [17] ALSM [18] Present ILM [17]  ALSM [18] Present
A3 —49.0250 —-49.4760 -49.5110 -49.5115 —-50.2590 -50.7820 -50.7920 —50.7922 —35.9990 —-49.5160 -35.9625
V3 —87.3740 —-87.5870 —-87.3880 —87.3888 —-89.5110 —-89.5920 -89.5710 —-89.5710 —63.4660 —87.3960 —63.4037
\2 —94.1930 -94.2510 -94.0710 -94.0710 —95.8230 -95.7800 -95.7530 -95.7536 —66.2580 —94.0800 -66.1736
Vs —73.8380 —74.0970 -74.0530 -—74.0530 —75.0940 -75.3490 -75.3550 -75.3554 —52.9870 —74.0600 -52.9275
ug 47.9770  48.5100 48.5390 48.5397 479750  48.5820  48.5830 48.5835 32,4500 48.5440 324115
Vg —53.5500 -52.3870 —-51.8250 —51.8259 —54.7240 —-53.2240 -53.0710 -53.0708 —37.0310 —-51.8300 -36.8826
Vip —87.9930 -87.8630 -87.5170 -87.5176 —89.8660 —89.5490 -89.4520 —89.4522 —62.3390 —87.5250 -62.2022
Vi1 —94.3830 —-94.4190 -94.2040 —94.2042 —96.0290 —-95.9450 -95.8990 —95.8988 —66.4220 —-94.2130 -66.3187
V12 —75.5780 —75.2380 -74.9540 —74.9539 —76.8780 —76.3420 -76.2790 -76.2791 —-53.4150 —-74.9610 -53.3082
IT,(t.m) - - -114.7 -114.7019 - - -119.3 -119.2682 - —-104.6 -107.6307
Table 9
Comparision of member forces for the 31-bars truss with different algorithms and various materials.
Forces (t) MATA MATB MATC
PEMP [17] ILM [17] ALSM [18] Present PEMP [17] ILM [17] ALSM [18] Present ILM [17] ALSM [18] Present
f; 442.80 444.60 443.11 443.0873 442.30 440.90 441.31 441.3054 430.00 443.11 428.9959
f3 514.80 509.90 512.61 512.5867 512.50 507.10 510.63 510.6323 500.70 512.61 501.2984
fa 397.60 397.00 397.82 397.7927 397.90 396.40 397.93 397.9342 397.20 397.82 397.3081
fs 278.10 278.60 278.61 278.5943 278.30 278.50 278.76 278.7565 277.30 278.61 277.0117
fs —430.70 —432.50 -431.67 —431.6603 —430.70 —43420 -433.19 —433.1843 —437.30 -431.67 —436.8997
fo —504.80 —-511.60 —509.98 —509.9564 —506.90 —-515.30 -511.94 —-511.9359 —520.40 -509.98 —519.4853
fio —389.90 —392.10 -392.08 —392.0528 —389.70 —393.20 -392.09 —392.0928 —392.00 -392.08 —391.5264
fn —278.00 —278.30 -—278.49 —278.4798 —277.90 —278.60 -—278.47 —278.4709 —278.70 —-278.49 —278.6257
f20 —203.00 —202.60 -202.72 —202.7261 —203.30 —203.10 -203.32 —203.3112 —-210.50 -202.72 —210.7070
27 204.70 207.40 206.15 206.1441 205.00 210.00 208.42 208.4275 215.00 206.15 214.5896

4.1.3. Thirty-one-bar truss

In the third example, the analysis problem of the 31-bar planar truss is investigated. This issue was previously addressed
by Toklu [18] and Ohkubo [17]. The geometry, dimensions, loads, boundary conditions, and finite element representation are
depicted in Fig. 11. The cross-sectional area of all members is 100 cm?2. Three types of materials including MATA, MATB, and
MATC are considered for combining geometric and material nonlinearities. The network configuration, as shown in Table 1,
is built to train the model.

As previously investigated examples, the analysis results gained by the presented work are reported in Tables 8 and 9 for
comparison with other algorithms. It is easily seen that the minimum energy, displacements, and member forces obtained
by NN show a strong agreement for both MATA and MATB materials. Meanwhile, for MATC material, the NN results are
very close to ILM [17], and better than ALSM [18] when the optimal energy (—107.6307 t.m) is smaller than ALSM (—104.6
t.m). Note, however, that the optimal energies of three types of materials are similar together. It is easily explained that the
stress-strain relationship curves of different materials are quite analogous. Fig. 12 displays the convergence curves of NN for
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Fig. 10. Potential energy, deflection, and the first member force with various external force levels for the 6-bar truss with different materials.
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Fig. 12. The convergence histories of the loss function for the 31-bar truss with different materials.

Table 10
Loading conditions for the 25-bar space truss with geometrical nonlinearity.
Node  Case 1 (kN) Case 2 (kN) Case 3 (kN)
kK F F, Fx F, E Fy F, F,
1 0 80 -20 800 0 —200 800 800 200
2 0 -80 20 -800 O —200 0 0 0

different materials. From this graph, we can see that MATC and MATB create the most rigid and flexible structure under this
loading, respectively.

4.2. Geometrical nonlinearity

4.2.1. 25-bar space truss

Next, a space truss with 25 members illustrated in Fig. 13 is investigated for the geometrically nonlinear analysis. All
members are assigned to MAT5 with the same linear elastic modulus 2 x 10° N/mm? and the same cross-sectional area
10 mm?2. Three loading cases given in Table 10 are considered. In addition, a NN (3-50-3) is constructed for the training
stage with 1000 epochs.

A comparison of the analysis results obtained by the present study and other methods [16] are reported in Tables 11 and
12. From the data in these tables, the gained results are quite close to each other in all loading cases. However, the differ-
ences between HS, PSO, and this work are represented by the relative error with respect to the FEM solution, as shown in
Table 13. More specifically, the maximum error of the NN is bounded and less than 0.5%, while HS and PSO gained up to
6.5777% and 5.3105%, respectively. Furthermore, the average error of the present method is the smallest and less than 0.05%.
On the other hand, it only requires 1000 evaluations to converge for all loading cases, while HS [15] takes 100,000 for all
cases and PSO [16] takes 1000, 20,000, and 50,000 for each case, respectively. The above experimental results have revealed
that the present approach can significantly improve the convergence rate compared with other methods but still ensuring
the quality of solution.
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Table 11

Comparison of displacements for 25-bars truss with various loading conditions.

Disp no. (mm) Case 1 Case 2 Case 3

HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present
u; —-0.076 0.06 0.000 0.0000 1257.533 1260.63 1261.101 1261.0713 2522.412 2521.86 2522.974 2522.9897
2 37.910 38.01 37.847 37.8463 —527.509 -529.80 —-528.823 —528.6810 1840.283 1839.88 1840.856 1840.8893
wy -37.214  -37.27 -37.199 —37.1997 —455.548 —455.35 —456.667 —456.7458 —3078.900 -3076.40 —-3083.146  —3083.3000
u, —0.064 0.06 0.000 0.0000 -1264.620 —-1261.15 -1261.101 —1261.1061 2437.300 2435.57 2441.255 2441.4587
v -37.766  —-37.68 —37.847 —37.8472 529.739 529.20 528.823 528.6903 2522.971 2522.31 2523.148 2523.1187
w3 -37.153  -37.16 -37.199 —37.1991 —457.905 —455.38 —456.667 —456.7199 —1435.857  —1433.56  -1441.611 —1441.8916
us 0.892 0.86 0.867 0.8669 —48.858 —47.50 —48.610 —48.7118 —393.940 —393.83 —394.610 —394.6388
V3 -1.731 -1.73 —1.744 —1.7441 —288.344 —287.03 —288.313 —288.4180 -371.211 -371.22 —371.344 —371.3444
w3 -16.342  -16.45 -16.392 -16.3924 -362.120 -361.33 —362.743 —362.8435 —904.675 -903.69 -905.218 -905.2232
uy 0.924 0.88 0.867 0.8668 —203.107 -203.19 —202.750 —202.7069 579.074 579.02 579.039 578.9871
vy 1.750 1.76 1.744 1.7444 -296.619 —295.57 —296.792 —296.8928 198.927 198.35 199.088 199.0949
Wy -16.355 -16.38 -16.392 -16.3914 —67.535 —68.84 —68.466 —68.4153 44.972 45.45 44.423 44.4499
Us -0.822 -0.85 -0.867 —0.8669 48.774 47.10 48.610 48.7141 1013.812 1012.54 1015.303 1015.3925
Vs 1.751 1.78 1.744 1.7444 288.714 286.57 288.313 288.4188 1037.329 1036.29 1038.580 1038.6544
Ws -16.402  -16.35 -16.392 -16.3913 —363.583 -361.26 —362.743 —362.8326 —353.069 -351.08 -356.179 —356.4052
Ug —0.844 -0.87 -0.867 —0.8669 202.232 202.95 202.750 202.7087 407.347 406.51 408.348 408.3932
Vg -1.746 -1.70 -1.744 —1.7443 297.259 295.18 296.792 296.8958 802.637 802.21 803.160 803.1612
We -16.430 -16.40 -16.392 -16.3922 —69.186 —68.67 —68.466 —68.4220 -36.622 —36.68 —36.688 —36.6542
IT,(kN.m) -3.7645  -3.7645  -3.7645 —3.7645 —1444.60 —1444.60  —1444.60 —1444.59 —2860.50 —2860.50  —2860.50 —2860.49
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Table 12
Comparison of member forces for 25-bars truss with various loading conditions.
Forces (kN) Case 1 Case 2 Case 3
HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present HS [15] PSO [16] FEM [16] Present

fi 75.676 75.690 75.693 75.6935 692.590 691.627 692.496 692.5688 107.640 107.691 106.578 106.5109
f, 3.915 3.902 3.893 3.8928 —334.408 —334.677 —334.607 —334.5806 273.603 273.432 274.288 2743303
f3 3.883 3.869 3.893 3.8940 73.046 73.231 72.764 72.7525 -310.372 —310.660 —310.686 —310.7146
fa 3.890 3.898 3.893 3.8927 72.343 73.245 72.764 72.7250 247.023 247.501 246.394 246.3438
fs 3.885 3.881 3.893 3.8938 —334.711 —334.761 —334.607 —334.5647 —70.532 —-70.574 —-70.015 —69.9877
fs —13.844 -13.879 —13.883 —13.8831 275.294 275.049 274.675 274.6401 -10.172 -10.110 -10.677 -10.7257
f; -13.875 -13.874 —13.883 —13.8832 —189.137 —189.519 —189.233 —189.2128 359.301 359.219 359.449 359.4599
fg —13.899 —13.909 -13.883 —13.8829 —189.279 —189.291 —189.233 —189.2280 187.014 186.599 187.700 187.7289
fo —13.894 -13.907 —13.883 —13.8830 273.927 275.003 274.676 274.6107 471.844 471.760 472.059 472.0688
fio 1.736 1.730 1.734 1.7338 —132.535 —132.998 -132.732 —132.7007 —110.993 —111.052 -111.426 —111.4535
11 1.745 1.730 1.734 1.7337 —132.868 —132.948 -132.732 —132.7026 —180.275 —179.696 —180.523 —180.5569
f12 —3.482 —3.490 —3.489 —3.4885 35.618 35.618 35.767 35.7734 —26.908 —26.821 —26.811 —26.8122
fi3 —3.497 —3.480 —3.489 —3.4887 35.798 35.781 35.767 35.7730 —106.789 —106.819 —106.798 —106.8088
f1a -3.376 -3.413 —3.489 —3.4851 —52.294 —51.883 —52.346 —52.3840 —260.641 —260.427 —260.940 —260.9510
fi5 -3.412 —3.402 —3.489 —3.4851 —125.339 —125.189 -125.277 —125.2644 —237.250 —236.904 —237.647 —237.6528
fi6 -3.366 -3.385 —3.489 —3.4849 —125.143 —125.368 -125.277 —125.2618 238.850 238.851 238.741 238.7296
f17 -3.412 -3.385 —3.489 —3.4848 —52.509 —51.825 —52.346 —52.3824 -177.597 —177.046 —178.359 —178.4138
fig —4.657 —4.660 —4.656 —4.6558 116.226 115.587 116.025 116.0641 —125.783 —125.457 -125.978 —125.9688
fio —4.643 —4.664 —4.656 —4.6560 —174.651 -174.273 —174.822 —174.8633 —248.091 —247.944 —248.093 —248.0878
f20 —4.654 —4.656 —4.656 —4.6558 —174.651 —174.273 —174.822 —174.8608 —190.078 —189.732 -190.717 —190.7642
for —4.662 —4.643 —4.656 —4.6560 115.946 115.450 116.025 116.0639 332.335 332.074 332.665 332.6797
f2o -7.378 —-7.385 -7.367 -7.3677 —46.776 —45.834 —46.168 —46.1846 —52.549 —52.744 —52.285 —52.2527
f3 —7.355 -7.397 —7.367 —7.3678 —54.925 —55.429 —55.264 —55.2386 —106.707 —106.436 -106.579 —106.5696
foq -7.365 -7.361 -7.367 -7.3672 —45.581 —45.918 —46.168 —46.1814 —50.752 —50.697 —50.960 —50.9357
f2s —7.358 -7.333 -7.367 -7.3672 —55.421 —55.700 —55.264 —55.2332 542.045 541.876 542.082 542.0712
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2 9

Fig. 13. Schematic of a 25-bar space truss.

Table 13
Comparison of error percentage of different algorithms with FEM for the 25-bar truss.
Error (%)  Case 1 Case 2 Case 3
HS PSO Present HS PSO Present HS PSO Present
Displacements
Min 0.0403 0.0488 0.0002 0.0108 0.0039 0.0004 0.0060 0.0033 0.0001
Max 6.5744 2.5229 0.0257 1.3598 3.1064 0.2142 1.2358 2.3119 0.0921
Mean 1.2672 0.8013 0.0093 0.3311 0.5678 0.0490 0.2210 0.3745 0.0167
Member forces
Min 0.0215 0.0000 0.0000 0.0136 0.0209 0.0027 0.0008 0.0084 0.0020
Max 3.5254 29808  0.1201 1.3169  0.9953  0.0725 4.7298 5.3105  0.4561
Mean 0.5981 0.5942 0.0244 0.2755 0.3451 0.0270 0.4321 0.5405 0.0353
Table 14

Comparison of deflection results for the 52-bar dome truss obtained by differ-
ent algorithms.

Disp no. (mm)  Mai et al. [26] FEM Present Error (%)
Wy 1.328 1.3276 1.3218 0.436
W, 0.720 0.7202 0.7251 0.677
We 10.000 10.0089 10.0199 0.109
w7 10.000 10.0078 9.9813 0.265
IT,(kN.cm) - -599.3685  —599.3687  0.000

4.2.2. 52-bar dome truss

A 52-bar dome truss shown in Fig. 14 is investigated for the next geometrical nonlinear analysis. The optimal cross-
sectional area of members obtained by Mai et al. [26] is used to perform this analysis, and they are classified into 8 groups,
where A} = Ay = Ay = Ay = Ag = 2 cm?, A5 = 16.672 cm?, Ag = 17.585 cm?, and A; = 2.519 cm?. All members are
made of a linearly elastic material MAT6 with Young’s modulus E = 21000 kN/cm?. The system is subjected to a downward
concentrated load P, = 150 kN at joints 6-13. The network configuration for training is mentioned in Table 1.
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Fig. 14. 52-bar dome space truss structure.

As the previously indicated problems, Tables 14 and 15 summarize the analysis results achieved by the present study and
other methods. Firstly, it can be observed that the minimum energy (—599.3687 kN.cm) acquired by NN is smaller than FEM
(—599.3685 kN.cm). Otherwise, the differences of (0.109-0.677)% for displacement and (0.052-1.430)% for member force are
observed compared with FEM. Although the maximum relative error of the member force is 1.43%, it should be noted that
the accuracy of the FEM solution depends on the choice of control parameters used in the nonlinear solution technique [26].
Fig. 15 shows the potential energy convergence history obtained by NN. It indicates that the network rapidly converges in
the first 200 epochs, and approaches the optimal solution after 400 epochs.
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Fig. 15. The convergence history of the loss function for the 52-bar dome truss.

Table 15

Comparison of member forces for 52-bars truss obtained by different

algorithms.
Force (N)  Connection FEM Present Error (%)
f 1-2 0.0000 0.0000 0.790
fs 2-3 1.0506 1.0391 1.095
fo 2-6 2.9809 2.9383 1.430
f12 2-7 2.9809 2.9383 1.430
21 6-7 —174.8488 —174.7141 0.077
f29 6-14 —185.2631 —185.1668  0.052
f30 7-15 —194.1764 —193.9626 0.110
f37 6-15 —18.3382 —18.3529 0.080
f4s 7-14 —~14.6041 —~14.5690 0.241

Table 16

Comparison of member forces for the 10-bar truss with different algorithms and various materials.
Forces (x10% kg) MATA MATB MATC

ILM [18] CEMP [18]  Present ILM [18] CEMP [18]  Present ILM [18] CEMP [18]  Present

f1 —299.800 —299.600 —299.7776 —299.900 -300.300 —299.9140 —299.700 —299.700 —299.7381
f; —-110.400 -111.300 —110.3785 —104.800 —104.500 —104.8231 —-106.900 -107.300 —106.8638
f3 —-141.700 —142.000 —141.7359 —-141.500 —-140.900 —141.5430 —-141.800 —141.900 —141.7916
f4 141.100 140.900 141.1068 141.300 141.900 141.2998 141.100 141.000 141.0511
fs —10.200 —11.900 —10.1559 —4.700 —4.900 —-4.7371 —6.600 —7.000 —6.6020
fs -126.700 —-124.100 —126.7441 —134.600 —135.000 —134.6006 -131.700 -131.200 —-131.7144
f 156.100 158.700 156.0986 148.200 147.800 148.2421 151.100 151.700 151.1283
fs 89.600 87.800 89.6217 95.200 95.500 95.1767 93.100 92.700 93.1363
fo 300.200 300.400 300.2224 300.100 299.700 300.0860 300.300 300.300 300.2618
fio 89.600 87.800 89.6216 95.200 95.500 95.1769 93.100 92.700 93.1362
M, (kg.m) - - —8776.2407 - - —9672.8855 - - —14544.8473

4.3. Material nonlinearity

In this section, two examples are considered to estimate the efficiency and reliability of the proposed approach for the
material nonlinear analysis. Three types of material models, namely MATA, MATB, and MATC, are used here. All members
have the same cross-sectional area 100 cm?. The analysis results obtained are compared with ILM and CEMP [18]. The
network architectures, as shown in Table 1, are defined to train the models.

4.3.1. 10-bar planar truss

A 10-bar planar truss is considered to evaluate the material nonlinear behavior. The geometry, loading, and boundary
conditions are illustrated in Fig. 16. The final results, including the energy, member forces, and errors, are summarized
in Tables 16 and 17. It can be observed that the energy of material MATA (—8776.241 kg.m) is larger than the MATB
(—9672.886 kg.m) and MATC (—14544.847 kg.m), so the structure with the material model MATA results in a better de-
formation than other materials. Clearly, the member forces found by the NN are very close to the results gained by ILM and
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Fig. 16. A 10-bar planar truss structure.
Table 17
Comparison of error percentage of different algorithms with ILM for the 10-bar truss.
Error (%)  MATA MATB MATC
CEMP Present CEMP Present CEMP Present
Min 0.0666 0.0009 0.1333  0.0002 0.0000  0.0059
Max 16.6667  0.4327 42553  0.7892 6.0606  0.0390
Mean 2.5704 0.0581 0.6854  0.0929 0.8212  0.0237
Table 18
Comparison of member forces for the 21-bar truss with different algorithms and various materials.
Forces (x10% kg) MATA MATB MATC
ILM [18] CEMP [18] Present ILM [18] CEMP [18] Present ILM [18] CEMP [18] Present
f1 171.200 171.300 171.1684 168.600 168.700 168.6476 158.200 158.200 158.1716
f 153.400 153.300 153.3964 146.400 146.500 146.4163 123.700 123.700 123.6722
fs —242.100 -242.200 —242.0716 —238.500 —-238.500 —238.4932 —223.700 -223.700 —223.6901
f; 303.400 303.300 303.3963 298.700 298.700 298.7314 288.500 288.500 288.4732
fs 353.200 353.000 353.1582 355.300 355.400 355.3107 357.500 357.600 357.5358
fo 328.500 328.700 328.5323 330.200 330.100 330.1548 337.300 337.200 337.2644
fn —204.800 —-205.700 —204.7896 —-192.200 -192.200 -192.2189 -216.400 -216.400 —-216.3917
fis -214.500 -214.600 —214.5337 -211.200 -211.700 -211.2335 —204.000 —-204.000 —203.9817
f19 —203.700 -204.100 —203.7155 -193.200 -193.200 —-193.2077 -162.800 -162.700 —162.7884
21 2.800 2.900 2.8185 3.700 3.800 3.7053 13.200 13.300 13.2244
T, (kg.m) - - —26823.3809 - - —30395.9725 - - —40341.9256

CEMP. According to Ohkubo [17], ILM outperforms the CEMP method when the complementary energy is always lower for
each material. Hence, it is used to evaluate the efficiency of the proposed model based on the error percentage. As shown in
Table 17, it is easily seen that the maximum relative error of the network is less than 1% while CEMP gained up to 16.6667%,
and usually occurs at the 5th element. On the other hand, the mean errors are smaller than 0.1%, and this again shows the
effectiveness of the network in the nonlinear analysis.

4.3.2. 21-bar planar truss

The last problem done herein is to analyze a 21-bar planar truss as shown in Fig 17. Tables 18 and 19 show the com-
parison with the results by CEMP and ILM. As the previous example, the differences in attained results of three methods
are almost small and negligible. However, the maximum relative error of our method is less than 0.6603% while CEMP is
3.5714%, and hence the accuracy of the NN is high. Furthermore, the stability is expressed by the average error which is less
than 0.1% for three material types.

349



H.T. Mai, Q.X. Lieu, ]. Kang et al.

Applied Mathematical Modelling 107 (2022) 332-352

4x5m -
(D O J
19 20 21 N
11 14 17
Sm
9/ N0 12 13 15,/ N6
2 3 4 v
s @ &0
. T
¥+ 800 ton
Fig. 17. 21-bar two-span continuous truss structure.
Table 19
Comparison of error percentage of different algorithms with ILM for the 21-bar truss.
Error (%)  MATA MATB MATC
CEMP Present CEMP Present CEMP Present
Min 0.0330  0.0012 0.0000  0.0029 0.0000  0.0038
Max 3.5714 0.6603 2.7027 0.1422 0.7576 0.1846
Mean 0.4569 0.0744 0.3125 0.0241 0.0877 0.0279

5. Conclusions

In this article, an unsupervised NN framework has been successfully developed to solve the geometrically nonlinear
analysis of inelastic truss structures. Herein, TPE is constructed as a loss function of the NN model, and it is minimized
in the training process. Accordingly, the responses of structures are found at the end of this procedure when achieving
the minimum energy. The efficiency and reliability of the proposed method are demonstrated through several numerical
examples including geometric nonlinearity, material nonlinearity, and dual nonlinearities. Numerical results pointed out that
the nonlinear behavior of truss structures can be simply and accurately solved by the proposed approach without utilizing
any incremental-iterative methods in the FEM. One of the interesting things of this paradigm is that its learning possibility
is only relied upon the set of the nodal coordinates. Hence, the obtained results are independent of the sampling techniques.
Furthermore, there are no complex sensitivity analyses because of employing the automatic differentiation in the paradigm’s
framework. With those outstanding features, the proposed methodology is promising to provide a new route to handle
complex problems in nonlinear structural analysis. However, there have been still an unanswered question about how to
determine the optimal architecture network. This will be the next topic of our future investigation.
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