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In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly
solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core
idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum structural weight. Herein,
the design variables of the structure are parameterized by weights and biases of the network with the spatial
coordinates of all joints as the training data. A loss function of the network is built based on the predicted
cross-sectional areas and deflection constraints obtained by supporting finite element analysis (FEA) and arc-
length method. Accordingly, the optimum weight corresponding to the minimum loss function is indicated as
soon as the complete training process. And then it is also serving as an objective of the BO for performing the
hyperparameter optimization (HPO) to find the best optimum structural weight. Several illustrative numerical
examples for geometrically nonlinear space trusses are examined to determine the efficiency and reliability of
the proposed approach. The obtained results demonstrate that our framework can overcome the drawbacks of
applications of machine learning in computational mechanics.

1. Introduction

Over the past decade, structural optimization problems have re-
ceived considerable attention from many researchers in the computa-
tional mechanics community. In general, for the linear analysis, the
structural displacements have not significantly changed the original
geometry in most cases (Thai et al., 2020). However, regarding the
design of slender and light structures such as trusses, arches, thin walls,
and so on, the geometrically nonlinear effects associated with large
deformations must be considered to fully understand the real structural
responses (Vo and Lee, 2011; Missoum et al., 2002; Wempner, 1971).
Furthermore, it must be remembered that all real structures are nonlin-
ear in some way. Hence, consideration of the nonlinear behaviors were
necessary when optimizing the structures for greater safety (Saka and
Ulker, 1992).

In general, several different algorithms have been proposed for
handling nonlinear structural optimization problems in recent literature
and categorized into two main groups. In the first one, gradient-
based algorithms have been developed for searching optimal solutions,
such as the optimality criterion (OC) (Khot, 1983; Khot and Kamat,
1985), the combining nonlinear and linear goal programming (El-
Sayed et al., 1989), the incorporation of the OC and nonlinear analysis
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technique (Saka and Ulker, 1992), the equivalent loads (Hrinda and
Nguyen, 2008), etc. Yet, there are several potential drawbacks of
conventional methods such as falling into the local optimum, depend-
ing on the initial point selection, concerning the unavailable gradient
information. The second one is gradient-free algorithms which rely
on evolutionary and population genetics (Kaveh and Rahami, 2006;
Kameshki and Saka, 2007, 2001; Pezeshk et al., 2000). Despite these
algorithms have been achieved certain success, they require many
evaluation functions which is a major drawback of the nonlinear struc-
tural optimization problem because of a huge effort of numerical
simulations.

In recent years, machine learning (ML) has been widely and suc-
cessfully applied in computational mechanics problems, including me-
chanical materials (Truong et al., 2020b; Srinivasan and Saghir, 2013;
Lee et al., 2021b), structural analysis (Mai et al., 2022c; Li et al.,
2021; Nguyen-Thanh et al., 2020), structural optimization (Mai et al.,
2021, 2022a; Trinh et al., 2022), damage detection (Lee et al., 2021a;
Truong et al.,, 2020a, 2022), reliability analysis (Lieu et al., 2022;
Afshari et al., 2022; Jia and Wu, 2022), and so on. In specific, physics-
informed neural network framework have received much attention in
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solving partial differential equations due to its mesh-free and other
desirable characters (Anitescu et al., 2019). For applications of ML
to structural optimization, the data-driven methodology is the most
popular approach when the network as a surrogate model is built based
on the previously collected data. Therein, the output data is a collection
of optimal designs that are found by numerical simulations (e.g., FEA)
with respect to the input data containing the information to define the
problem. And it has been successfully applied for design optimization of
linear (Hajela and Berke, 1991b,a; Ramasamy and Rajasekaran, 1996;
Lee et al., 2020; Li et al., 2019) and nonlinear structures (Mai et al.,
2021; Abueidda et al., 2020). However, this approach exists limitations
that are difficult to overcome such as : (i) the obtained results depend
strongly on the amount and quality of the training data as well as
the hyperparameters of the network; (ii) estimating the appropriate
training data size for each problem is a difficult task; (iii) it requires
a large number of costly iterations for collecting data of the nonlinear
problem; (iv) and especially, it demands the prior knowledge and
expert experience in collecting data and selecting hyperparameters.
In recent times, as an alternative approach, the network is used to
parameterize the design variable for solving truss (Mai et al., 2022c)
and topology optimization (Chandrasekhar and Suresh, 2021; Zehnder
et al.,, 2021; Hoyer et al., 2019). Overall, as compared to the data-
driven framework, the advantages of this approach include that the
training data only contains the information of the structure without
any numerical simulations, its size is simple to determine, and the
network directly performs the optimization process. Nevertheless, it
faces several challenges due to the tuning hyperparameters as well as
the local minimum (Mai et al., 2022c). Additionally, to our knowledge,
the ML model directly solving optimization of truss structures with
geometrically nonlinear behavior has still not been yet studied thus far.
And all these drawbacks motivated us to perform this study where the
above-mentioned issues were resolved.

This paper aims to propose the DNN-based parameterization scheme
which is established to solve the optimization of geometrically nonlin-
ear truss structure with the self-tuning hyperparameter of the network.
Accordingly, the cross-sectional areas of all truss members are param-
eterized by weights and biases with the spatial coordinates of joints as
the training data. Note that this data is a definite size and easily collects
without any numerical simulations. Therein, the combination of FEA
and arc-length technique plays a supporting role in building the loss
function of the network. Once the training is complete, the obtained
optimal weight corresponding to the hyperparameters of the network
is the objective of the BO to perform the self-adjusting operation. And
finally, the best optimum weight of the structure can be indicated
with respect to the optimal network. Several numerical examples for
design optimization of truss structures under deflection constraints are
investigated to evaluate the efficiency and reliability of the proposed
framework.

The rest of the paper is organized as follows. Section 2 provides
the statement of the size optimization problem of truss structures
with deflection constraints. Thereafter, the efficient DNN-based pa-
rameterization paradigm and BO algorithm for the HPO problem are
presented in Section 3. Several numerical examples are investigated
to demonstrate the reliability of the present method in Section 4. And
finally, the conclusion is outlined in Section 5.

2. Statement of structural optimization problem

Optimization of structures with nonlinear behavior is known as a
complex and time-consuming task related to nonlinear constraints. The
sizing optimization of truss structures is one of these problems, which
aims to minimize the structural weight that all design constraints are
satisfied. Therein, the cross-sectional areas of members are treated as

European Journal of Mechanics / A Solids 98 (2023) 104869

continuous design variables and confined within an acceptable range.
Its mathematical model can be expressed as follows

g my
Minimize W (A) = Y A, Y 5Ly,
k=1 i=1

. j (@)
subjected to  g;(A) = ——-1< 0,
[4];
I up
A S AL S AL

j=1.2..p,
k=1,2, .. n,

where W (.) is the weight of the truss structure; A, is the cross-sectional
area of the members belonging to the kth group which can range
between Ai"“’ and A';p ; n, denotes the total number of groups in the
structure; m, is the total number of members in the kth group; p denotes
the number of constrained displacements; p; and L; are the material
density and length of the ith member; g; represents the jth constraint
function; 4; and [4]; are the jth displacement and allowable displace-
ment, respectively. To obtain the above constraints, Total Lagrangian
kinematic description (De Borst et al., 2012; Coda and Paccola, 2014)
and arc-length technique (Riks, 1979; Kadapa, 2021) are applied for
the resolution of the geometrically nonlinear problem.

In order to solve this problem, a self-adaptive penalty function,
as suggested by Sonmez (2011) and Hasancebi (2008), is used in
this work to handle the structural displacement constraints. Therefore,
Eq. (1) is rewritten as follows

LA =(1+¢€)?2W @A),
P
c =) max (0,g; (A)),

Jj=1

Minimize

(2)

in which ¢ represents the sum of the violated constraints; the explo-
ration and exploitation rates of the design domain are controlled by
two parameters ¢, and £,. According to Refs. Sonmez (2011), Hasancebi
(2008), the value of ¢, is fixed at 1, while the parameter ¢, is dynamic
and self-adaptive based on the feedback from the obtained result in the
previous iteration and is described as follows
L0 _ { (1/x) 5(11_]) if fU= is feasible, @)

1 Ke(l'_') if £f=D is infeasible,

in which eﬁ’) and e(l”l) are the penalty coefficients at iterations ¢ and

(t — 1), respectively. And ¢, is set equal to 1 at the beginning of
the iteration. « is the learning parameter of e(l'), and is defined as
follows (Sonmez, 2011; Hasancebi, 2008)

K=1+117>1.01, @)

where p is the total number of constraints.
3. Deep neural network-based parameterization framework

In this section, the DNN-based parameterization paradigm is in-
troduced to directly implement optimization of truss structures with
nonlinear behavior. The schematic illustration, as shown in Fig. 1,
provides an overall view of the proposed approach. Herein, the cross-
sectional areas are parameterized by the parameters 6 of the network.
Consequently, the core of our approach is based on optimizing all
weights and biases instead of the cross-sectional area of truss members.
In addition, BO is adopted to tune the hyperparameters of the network
with a view to achieving the best optimum weight design. To reach
this goal, a set of initial guess hyperparameters Y, is first generated
by Latin Hypercube Sampling (LHS) technique in the search space.
For each vector of hyperparameters in the training set Y, , DNN is
designed with the initial weights and biases are set randomly according
to the normal distribution on the interval [-1, 1]. The coordinates of
members are presented as samples of the input data, while the outputs
of the network are the cross-sectional area of members unknown A
and their value obtained by the feedforward phase, respectively. Next,
the self-adaptive penalty function is treated as the loss function which
is derived based on the weight and nonlinear structural responses
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Fig. 1. Schematic of integration of DNN-based parameterization framework into Bayesian optimization for structural optimization.

obtained from numerical simulation based on FEA and arc-length tech-
nique with respect to the predicted outputs of the network. After
that, all parameters of the network are automatically adjusted by the
backpropagation algorithm. And the computation described above is
iterated and repeated many times, and it is known as the training.
When the network has been properly trained, the optimum weight of
structures can be discovered with the minimum loss function. When
the training set including the corresponding hyperparameters and the
obtained optimum weights is collected or updated. Thereafter, within
BO framework, a Gaussian process (GP) surrogate model is used to
approximate the training set D,. When the next candidate point y,
is found by maximizing the acquisition equation, and its corresponding
optimum weight W,,  obtained by training the network, respectively.
And an iterative infilling process is performed to search the best min-
imum weight corresponding to the optimal hyperparameters. More
generally, our approach is made up of three major components, and
the following subsections go into greater detail about them.

3.1. Deep neural network

First, it is worth mentioning that our model is designed based on an
unsupervised learning framework. As a result, the training data only
contains the input data, while the corresponding output values are not
required. In this work, a set of coordinates (x;, y;, z;, x s Vjs Zj) of all
truss members is chosen as the training data. And the cross-sectional
areas A are the output values of the network which are unknown and
must be estimated through the learning process. It is easily be seen
that the geometry of the structure makes it simple to obtain training
data with small size and independent of sampling techniques. More
concretely, its size is (kx6) and (k x4) for space and planar truss
structures, respectively. Here, k indicates the number of truss members.

A fully connected neural network with depth #, as shown in Fig. 2,
is employed to obtain the solution of the cross-sectional areas A within

the spatial coordinates of nodes (x,y,z). It consists of one input layer,
one output layer, and (# — 1) hidden layers. Therein, the first layer
(0th) has four or six neurons for 2- or 3-dimensional problems, and the
last layer (#'") has only one neuron. Meanwhile, the number of hidden
layers, as well as the number of neurons in each hidden layer, were
hyperparameters optimized by BO. Neurons in the same layer have no
connections, but every two neurons in neighboring layers are connected
by weight (w). In addition, the hidden neuron is added by bias (b) into
the sum of the weighted inputs.

Generally, the training of the network is a cyclic process performed
to adjust the weights and biases in order to minimize the loss function.
To achieve this goal, the feedforward and backpropagation mechanisms
were utilized for each iteration. Firstly, the information flow is passed
in one direction from the input layer to the output layer in the feedfor-
ward process which is defined by a mapping: R® — R. Consequently,
the relationship between the input and output values of each layer is
defined as follows

input layer

hidden layers : h* = f (W"Th(k‘“ +b") € R,
for 1<k< (-1,

W = f, (wah@”—D +bf) =

h =[x,y 2, X5 V)5 zj] € RS,

6))
output layer

where WO is the weight matrix; b") is the bias vector; m,, is the number
of units in the kth hidden layer; f(.) denotes the activation function,
which allows the network to learn about the complete relationship
between the input and output. There are several popular activation
functions, for example, Tanh, Sigmoid, ReLU, LeakyReLU, Softmax,
Linear, and so on. In this study, the softmax function is applied for
the output layer, while the activation function of the hidden layer is
estimated by BO.

And then, the loss function £, which will be explained in detail in
Section 3.2, is defined based on the outputs and their corresponding
responses. Next, to minimize this function, its gradient information
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Fig. 2. A fully-connected deep neural network architecture.

concerning the parameters of the network is determined by the back-
propagation algorithm. And the weights and biases will be updated in
combination with the optimizer. Several optimizers are available for
training the DNN model such as SGD, RMSprop, Adagrad, etc. One
of the most widely used optimizers is Adam (Kingma and Ba, 2014)
and demonstrated through recent literature in the field of analysis and
optimization of the structure (Mai et al., 2021, 2022c,a). Hence, it
is used in this work to perform the training process. As a result, the
network parameters at iteration ¢ are expressed as

N

= -1 , (6)
(1-8) (Vi +ey/1-8)
where m, and v, are obtained by
m, = pm,_ +(1-5).VL, (6,). 1%

vi=Bvi +(1-5) VL, (6,_;),

in which @ is the trainable parameter vector that consists of weights
and biases; m, and v, are the first and second raw moment vectors
which are controlled by two exponential decay rates g;, §, € [0,1);
e denotes a constant added to ensure numerical stability, and 7 is
the learning rate. In this study, BO was introduced to indicate the
optimal learning rate, while other parameters with their default values
as suggested by Kingma and Ba (2014) were utilized to train the model.
Interested readers can refer to Kingma and Ba (2014) for details. VL is
the sensitivity of the loss function which is focused in the next section.

3.2. Loss function

Clearly, in our approach, the cross-sectional areas are previously
unknown, and their predicted values Ai (x,y,z,0) are expressed by

the coordinates of truss members and the parameters of the network.
According to the above Fig. 1, the loss function is strictly derived from
the predicted cross-sectional areas and structural responses obtained
using FEA with respect to these predicted values, and it is also the
penalty function of structural optimization in Eq. (2). It is rewritten
as follows

L(X,y,2,0) = (1+£1c)£2W(A(x,y,z,0)> . 8)

As shown in Eq. (8), it is easily seen that the design variables are
now the parameters of the network instead of the cross-sectional areas
as the conventional approach. Hence, the training process, which is also
the structural optimization task, is to minimize the loss function to find
the optimal parameters of the network.

0" = argmin (L (x,y,%,0) ). 9
0

In order to train the model, the sensitivity of the loss function to the
parameter change is given by

n ~

L % -1y, dc e OW | 04,
— = &(1+¢€c W—+(l+ec)”"—| —. (10)

20, l; 2(l+e1) A, (1+erc) a4, | 99,
From Eq. (10), the derivative of the output LT computed au-

tomatically with the backpropagation algorithm.agAnd, an automatic
differentiation tool JAX (Bradbury et al., 2020) is applied for computing
the gradient of constraints (Mai et al., 2022a; Chandrasekhar et al.,
2021). While the other term g—;‘; can be easily and exactly determined

by the following formulation

3

ow

= = YL an
i=1
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And clearly, when the sensitivity of the loss function is entirely
defined by the above terms and hence it facilitates training to adjust
the parameters of the network as Eq. (6).

3.3. Hyperparameter tuning

Hyperparameters are a set of parameters that cannot be directly
obtained from the training. It can be categorized into two types: one
relates to model training, e.g. learning rate, batch size, etc., and the
other deals with the structure of networks, such as the number of
hidden layers, hidden neurons, and so on. They are often based on
the trial-and-error process, and hence it depends on the experience and
intuition of expert users (Hertel et al., 2020). In addition, HPO plays a
crucial role in the success of applying DNN to practical problems, and
it is known as a black-box optimization problem (Asali et al., 2021).
Hence, traditional algorithms are poorly suited for such tuning tasks.

In this article, BO, which is a sequential surrogate model-based
algorithm, is utilized to estimate the best hyperparameters of the net-
work. Accordingly, a probabilistic surrogate model is developed to fit
all currently observed samples into the target function. Then, the next
candidate point is estimated by maximizing the acquisition function
to detect promising hyperparameter regions, and the above steps are
repeated until the stop criterion is satisfied. The mathematical formu-
lation of the unconstrained black-box optimization can be expressed as
follows

y* =argminW,, (y), 12)
yeXCRY

where y is the hyperparameter vector including real-, integer-, and
categorical-valued attributes; & denotes a compact set of R? with d
dimensions; W,, is the obtained minimum mass of the truss structure
by the network corresponding to hyperparameters, and it is selected as
the objective function of the tuning process.

To approximate the above objective function, GP is utilized to
provide a distribution over functions. Let us examine a set of initial

observations D, = {y,-, W, } in which the obtained minimum weights

T
by the network W,, = [W W, Wopn] are noise-free at Y =

op s Wopy»+++»
[Yi: Y20 oo y,,]T. When the posterior probability distribution of W, (y)
at a new point y can be obtained via the Bayes’ rule as follows

Wop 0| ¥. Dy = N (1, 9. 02 ) (13)
with

Hy ) = p () + KK (W, —u(Y)),

2 () =k(y,y) -K'K 'k, a4

where pu, (.) and 0'3 (.) are the posterior mean and covariance function,
respectively; k and K are the covariance vector and matrix; The Matérn
kernel function is chosen to calculate the covariance values (Jones
et al., 1998).

Next, an acquisition function is established to indicate the next
hyperparameter set by its maximizing value based on the previous
observations D,. It must be carefully selected to trade off exploitation
in current areas and exploration over the search space. And there are
several popular choices for this function, such as the lower confidence
bound (LCB), probability of improvement (PI), entropy search, and so
on. In this work, the expected improvement (EI), which is the most
common acquisition function, is selected because of its good perfor-
mance (Jones et al., 1998). Its mathematical expression is rewritten as
follows

Wop (V)= 1a(¥)

Woo (V)= #a(y) )
0, (y) ?

E1®) = (Wo 0 = 1, ) @ -~

)+, (
as)

where @(.) and ¢(.) are the standard normal cumulative distribution
function and probability density function, respectively. From Eq. (15),
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the first term is devoted to the local search phase to evaluate points
with low mean, while the other term is dedicated to the global search
phase to estimate points with high uncertainty. Interested readers can
refer to Ref. Jones et al. (1998) for more details.

Algorithm 1 Generic pseudo-code for BO without constraints

Input: ny: number of the initial hyperparameters combinations
N,,qx: Maximum iterations

f: GP parameter space
Output: y*, W, the best solution

1: Using LHS to obtain n, combinations of hyperparameters Y, from
the design space

2: Training the network with the above hyperparameters to obtain the
weight values Wapn0

3: Collect a set of initial observations D, = {y,., W,, } Vi=1,2,..,ng
0 i

: Target W, (y*) = minW,,
Set n = n,

: while n < N,,,, do

Find GP hyperparameter § by the maximum likelihood estima-
tion method

Build the GP model on D,

Find y,,; by maximizing Eq. (15)

10:  Training the network with the hyperparameters y,,; to evaluate

N9 R

© ®

OPn+1
11: AppendD, , =D, U {(y,,H,VVO[,M)}
12:  Update W, (y*)
13: n=n+1
14: end while

A pseudo-code of the general BO framework for the hyperparameter
tuning is summarized in Algorithm 1. In order to evaluate its efficiency,
a single variable test function with five initial samples is considered to
estimate the minimum value. And the performance process is depicted
in Fig. 3. In which, the solid black line presents the true function, the
blue dashed line denotes the GP posterior mean. The respective infill
function is shown by the solid red line, and the cyan area represents
the 95% confidence interval. It is easily seen that the EI value tends to
increase near the minimum posterior mean, and the maximum posterior
uncertainty. The next samples are determined through the combination
of measured values and uncertainties. And it only needs nine evaluation
functions to find the near-global optimal solution.

4. Numerical examples

In this section, four well-known benchmark problems are inves-
tigated to justify the efficiency of our approach for optimization of
structures with geometrically nonlinear behavior. The obtained results
will be compared with the DE and previous works. In order to en-
hance the reliability and performance of the network, BO algorithm
is employed to automatically tune the hyperparameters, including the
number of hidden layers, the number of neurons in each hidden layer,
the activation function, and the learning rate of the used Adam opti-
mizer, and their value range are summarized in Table 1. In addition,
Softmax is adopted as an activation function for the output layer during
the training process. In all cases, the initial and maximum number of
iterations for BO are set to ny = 10 and N, = 25, respectively. While
the maximum number of epochs equal to 300 for the training network.
Note that the learning process is terminated when either the maximum
number of epochs reaches or the norm of the gradient value is less than
0.01. In addition, HPO is implemented 10 independent runs to evaluate
the influence of uncertain quantities in BO.

For DE algorithm, its parameters are set similar to Hau et al. (Mai
et al., 2021). Due to the stochastic nature of the algorithm, the number
of independent runs is only limited to 10 times. To ensure a fair com-
parison of the various method, all numerical examples are implemented
based on Tensorflow library with Python language and run on a desktop
computer with Core i5-8500 CPU @3.0 GHz, 16 GB RAM of memory.
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Table 1
Configuration space for the hyperparameters of the network.
Hyperparameter Search space Type
No. of hidden layers [1, 4] Integer
No. of hidden neurons [20, 60] Integer
Activation function [ReLU, Sigmoid, Softmax, Tanh, LeakyReLU] Categorical
Learning rate [0.001, 0.1] Real
Iteration 1
D
O Samples = = = |\|ean * Max El ® New sample
True function ——— ElI 95% ClI /

&
U -
Iteration 2
G
— - ~

Iteration 3

Iteration 4

Fig. 3. An example of EI based Bayesian optimization for solving the one-dimensional minimization problem.
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Fig. 4. A 25-bar space truss structure.

Table 2
Material properties, upper and lower bounds on design variables.

Test problems Young’s modulus Material density Cross-sectional

E (kN/mm?) p (kg/cm?) area (mm?)
25-bar space truss 207 0.00785 2<A,<40
52-bar dome truss 210 0.00785 2 <A; <100
56-bar space truss 210 0.00785 5 <A, 2150
120-bar dome truss 210 0.00785 2 <A, <50

4.1. 25-bar space truss

A 25-bar space truss structure, as shown in Fig. 4, is investigated
as the first numerical example for the optimum design of geometrically
nonlinear truss structures. Young’s modulus, material properties, and
design variable bounds are summarized in Table 2. Cross-sectional
areas of members are categorized into 8 groups with respect to 8 design
variables as depicted in Fig. 4. It is subjected to the loading condition
defined in Table 3. The displacement at nodes 1 and 2 are limited in
the interval [-10, 10] mm in the x and y directions. In order to get
a fair comparison, a set of 10 initial hyperparameter combinations is
used for all infill strategies of the BO.

The optimal hyperparameters of the network found by various infill
strategies are reported in Table 4. Besides, Table 5 summarizes best,
worst, mean, standard deviation (Std), and 95% confidence interval
(95% CI) of the optimal weight. Firstly, it is easily seen that there is
a good agreement between the optimal weights obtained by different

Table 3

Loading condition for the 25-bar space truss.
Nodes Loading (kN)

X y z

1 -80 -120 30
2 —60 -100 30
3 -30 0 0
6 -30 0 0

procedures. Clearly, the differences here were not significant between
the best, worst, and mean weights. Therein, the EI achieves the lightest
design overall (W,,,, = 504.231 kg; Std = 0.069 kg; 95% CI [504.556,
504.643] kg), and then the PI (W,,,, = 504.577 kg; Std = 0.189 kg;
95% CI [504.863, 505.097] kg), and LCB (W,,,, = 504.675 kg; Std
= 0312 kg; 95% CI [505.223, 505.609] kg). In addition, the optimal
architecture of the network obtained by the EI (6-39-39-1) is smaller
than PI (6-37-37-37-1), and LCB (6-60-60-60-60-1). Hence, it requires
the least number of weights and biases with only 1873 parameters,
while the other strategies require a larger number of parameters, e.g., PI
with 3109 parameters, and LCB with 11461 parameters. Furthermore,
the obtained activation function is ReLU which is simple for computing,
non-parameters, avoids gradient saturation problems, and converges
much faster than others (Korenciak, 2018). The convergence histories
of the best tuning hyperparameters process with various infill strategies
are depicted in Fig. 5. Note that they coincide at the first 10 iterations
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Table 4
Optimum hyperparameters of the network obtained using the BO with different
acquisition functions for the 25-bar space truss.

Infill strategy ~ Hyperparameters
No. of hidden  No. of hidden  Activation Learning
layers neurons function rate
PI 3 37 ReLU 0.01489
LCB 4 60 LeakyReLU 0.00425
EI 2 39 ReLU 0.03796

Table 5
Statistics of the optimal weight with different acquisition functions for the 25-bar space
truss.

Weight (kg)

Acquisition functions

PI LCB EI
Best 504.577 504.675 504.231
Worst 506.489 507.362 504.988
Mean 504.980 505.416 504.600
Std 0.189 0.312 0.069

95% CI 504.863-505.097 505.223-505.609 504.556-504.643

because of the common use of initial hyperparameters generated by
the LHS technique. But after that, their convergence rates are different
at all. Clearly, the EI shows its efficiency in detecting the optimal
hyperparameters with the minimum weight. Consequently, it is chosen
as an infill strategy for the BO in this study.

The optimal results gained by our approach with the optimal net-
work architecture (6-39-39-1) and other algorithms are tabulated as
Tables 6-7. It is easily seen that the optimum weight (504.231 kg) ob-
tained by the present approach is smaller than other studies (Saka (Saka
and Ulker, 1992): 507 kg; FEA-DE (Mai et al., 2021): 504.315 kg; DNN-
DE (Mai et al., 2021): 505.493 kg; SQP: 652.255 kg). More formally, all
constraints are satisfied as shown in Table 7. Additionally, Fig. 7 shows
the convergence histories of various methods. Clearly, the convergence
rate of the proposed approach with the optimal network is much faster
than of the FEA-DE, DNN-DE, and sequential quadratic programming
(SQP). Furthermore, it tends to be stable around 100 analyses and
reaches the optimal solution after only 175 analyses. On the contrary,
the FEA-DE and DNN-DE require 1,490,799 and 18,120 times of non-
linear analyses (Mai et al., 2021), respectively. Otherwise, both SQP
and our model are the gradient-based methods, so their convergence
speed accelerate in the early iteration. However, the optimal weight
found by SQP (652.255 kg) is a local optimum instead of a global
optimum. This can easily be explained by the fact that it depends on the
choice of initial point and hard to choose a suitable starting point. Fig. 6
represents the iteration history of the SQP algorithm for two different
initial points in the feasible and infeasible domains, respectively. As can
be seen on the plot, it cannot escape from the local minima. Meanwhile,
the proposed method has completely overcome this drawback by using
BO. It allowed the automatic tuning of hyperparameters of the network.
And this process is the automatic selection of the starting point. Because
when the hyperparameters were changed, the initial weights and biases
of the network leaded to change the position of starting point. Its utility
is demonstrated through the obtained results shown in Table 5 and
Fig. 5. Therefore, our approach is capable of effectively handling design
problems containing the local minima.

4.2. 52-bar dome truss

Next, a 52-bar dome truss illustrated in Fig. 8 is examined. This
benchmark has been previously studied by Saka and Ulker (1992). The
data of the optimization problem is tabulated in Table 2. All members
of the structure are classified into 8 groups with respect to the design
variables as labeled in the same figure. An external load of 150 kN is
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applied in the z-axis’ positive direction at joints 6-13. Since this is a
symmetric structure, the vertical displacements of nodes 1, 2, 6, and 7
are restricted to 10 mm.

As the previously investigated example, the optimal hyperparame-
ters of the network, including hidden layers (3), neurons in each hidden
layer (37), activation function (ReLU), and learning rate (0.01489) as
shown in Table 8, are found by the BO with respect to the minimum
weight of 2,141.01 kg. From Table 9, it is easily be seen that the
best (2,141.01 kg), mean (2,142.715 kg) and 95% CI (2,142.280 kg -
2,143.149 kg) values of the optimum weight are close with the Std less
than 0.7 kg. Fig. 9 shows the graph of the convergence curve which
gives a more detailed performance view for tuning hyperparameter.
Clearly, the optimal hyperparameters achieved after only 20 times of
training. On the other hand, the optimal results corresponding to the
optimal network, including the cross-sectional areas, weight as well
as deflection constraints, are summarized in comparison with other
studies in Tables 10-11. It is obvious that our approach outperforms
others in terms of the minimum weight, while all displacements are free
from any violations of constraints. More specifically, the best optimum
weight obtained by the proposed method (2,141.01 kg) is smaller than
DNN-DE (2,142.41 kg), FEA-DE (2,141.9 kg), and Saka (5,161 kg).
Clearly, the optimal weight found by Saka is still far behind comparing
to other studies. This is due to the fact that it probably traps in the local
optimum. Meanwhile, our model entirely overcomes this challenge. In
addition, a comparison of the convergence rates is shown in Fig. 10.
As can be seen on the plot, the mass of structures rapidly decreases
in the first ten epochs and find the solution only through 237 epochs.
Again, our procedure converges very fast to the optimal solution, while
the others are still a long way from the target value. It can easily
be interpreted by the fact that the training network works based on
the gradient-based optimization. Hence, the number of evaluations
will go down much more quickly. Furthermore, the obtained results
demonstrate the efficiency of the proposed framework.

4.3. 56-bar space truss

The next optimization problem deals with the 56-bar space truss
shown in Fig. 11. As shown in this figure, the structure has 4 stories and
the cross-sectional areas of members as design variables are collected
in 4 groups. It is subjected to concentrated loads of 45.5 kN in the x-
axis’ positive direction at nodes 1, 2, 5, 7, 9, 11, 13, and 15 and 91
kN in the negative z-direction at nodes 1, 2, 3, and 4. The data dealing
with the design, including Young’s modulus, density, and design vari-
able bounds, are listed in Table 2. All displacements of joints in the
x-direction are limited in the interval [-30, 30] mm.

The optimal results, including the hyperparameters, design vari-
ables, total weight, and deflection constraints, are reported in Tables 8,
9, 12, and 13. Accordingly, the best combination of hyperparameters
(4, 59, ReLU, 0.09405) is found by the BO with respect to the minimum
weight (14,549.691 kg) that it only needs 25 times for the training
network. It can be observed that the best optimum weight is close to
mean (14,550.723 kg) and worst weights (14,554.903 kg) with the
error less than 0.008% and 0.036%, respectively. Furthermore, the
best optimal masses is found with the small Std values (0.508 kg). In
addition, the lower (14,550.422 kg) and upper (14,551.023 kg) bound
values of the 95% CI are not significantly different and close to the best
weight. The convergence history of the BO is depicted in Fig. 12. As
observed, the best-fitted network model achieves after only 5 samples
which are found by the infill strategy EI with 10 initial samples. Addi-
tionally, the optimum weight attained by the network with the optimal
hyperparameters is the best design without violation constraints. Note
that although Saka (Saka and Ulker, 1992) was given the smallest
weight (13,577.160 kg), the displacement constraints are violated at
nodes 1 (31.1542 mm) and 2 (32.2244 mm) in the x-direction. As
indicated in Ref. Mai et al. (2021), the sensitivity of the nonlinear
response and control parameters of the numerical method used by Saka
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Fig. 5. The convergence histories of the HPO using BO for the 25-bar space truss structure.

Table 6
Comparison of optimal results for the 25-bar space truss.
Design variable Saka FEA-DE DNN-DE SQP Present
A; (cm?) (Saka and Ulker, 1992) (Mai et al., (Mai et al.,
2021) 2021)
1 2.000 2.000 2.000 2.330 2.003
2 7.500 3.098 4.099 11.498 2.934
3 13.120 16.910 15.113 8.940 17.025
4 2.000 2.000 2.000 2.352 2.035
5 4.270 6.566 3.906 2.271 6.736
6 3.800 3.891 4.851 10.238 3.876
7 4.220 3.330 3.744 9.544 3.265
8 17.150 18.320 17.779 14.404 18.439
Best weight (kg) 507 504.315 505.493 652.255 504.231
Table 7
The displacement constraints of the 25-bar space truss.
Displacements Saka FEA-DE DNN-DE SQP Present
(mm) (Saka and Ulker, 1992) (Mai et al., 2021) (Mai et al., 2021)
u, -6.704 -9.764 -8.313 -6.170  -9.027
v, ~10.000 ~10.000 ~10.000 —9.535  —-9.997
u, —6.289 -9.346 ~7.905 -5.760  —8.639
v, -8.850 -8.323 -8.601 -8.610  -8.427
Table 8 4.4. 120-bar dome truss
Optimum hyperparameters obtained by using the BO for different problems.

Test problems Hyperparameters The last problem done herein is to optimize a 120-bar dome truss
No. of hidden ~ No. of hidden  Activation  Learning structure as shown in Fig. 14. All cross-sectional areas of members are
layers neurons function rate categorized into 7 groups corresponding to design variables. The data

52-bar dome truss 3 37 RelU 0.01489 concerning the design of this benchmark is indicated in Table 2. The

56-bar space truss 4 59 ReLU 0.09405 system is subjected to vertical loads in the negative direction of the

120-bar dome truss 2 45 ReLU 0.04433

z-axis which are 60 kN at node 1, 30 kN at nodes 2-13, and 10 kN at
nodes 14-37. The vertical displacement of free nodes under this loading
is limited to 10 mm.

can affect the optimal result. Fig. 13 displays the convergence curves of The optimal hyperparameters were obtained after 25 training times,

the present method and FEA-DE for the structural weight. Once again
shows that the convergence speed accelerates within 50 first epochs and
achieves the optimal solution after only 198 times nonlinear analyses.

as shown in Table 8 and Fig. 15. With respect to the optimal network,
the optimum results, including the weight, statistics, design variables,
and constraint values, are reported in Tables 9, 14 and 15. Firstly,
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Table 9
Statistics of the optimal weight with different problems.

Test problems Weight (kg)

Best Worst Mean Std 95% CI
52-bar dome truss 2,141.010 2,146.903 2,142.715 0.665 2,142.280-2,143.149
56-bar space truss 14,549.691 14,554.903 14,550.723 0.508 14,550.422-14,551.023
120-bar dome truss 5,836.717 5,841.903 5,838.019 0.605 5,837.661-5,838.376

10
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Fig. 8. Schematic of a 52-bar dome truss structure.

from the data in Table 9, the range of confidence interval (95% CI =
5,837.661 kg to 5,838.376 kg) changes for narrow and close to the best
(5,836.717 kg), mean (5,838.019 kg) and worst (5,841.903 kg) weight
with the small Std (0.605 kg). Next, it can be seen that the optimum
weight found by Saka (Saka and Ulker, 1992) (7,587 kg) was the
heaviest and violated the design constraints (—10.015mm). In addition,
it is interesting that in this example, the optimum weight gained by
the FEA-DE (6,504.674 kg) is also much larger than the proposed
paradigm (5,836.717 kg) without violating constraints. This can be
explained that the DE algorithm may trap in the local optimum. And
clearly, our approach gives the best result in terms of both the optimum

11

weight and constraints. Hence, tuning hyperparameters by the BO is
an important role in improving accuracy and searching the global
solution, as shown in Fig. 15. A comparison of the convergence history
between the optimal network and FEA-DE is illustrated in Fig. 16. As
the above examples, the proposed framework always converges much
more rapidly than the FEA-DE. It only requires 200 times of nonlinear
analysis, while the DE requires a large number of nonlinear analyses
(13,740). Again, this demonstrates the efficiency of the self-tuning DNN
for solving the optimum design problem with geometrically nonlinear
behavior.



H.T. Mai et al. European Journal of Mechanics / A Solids 98 (2023) 104869

2800 T T T

2700 b

2600 [ i

Weight (kg)
&
S

N
B
o
o
T
1

2300 | 4

2200

5 10 15 20 25
Number of calls n

Fig. 9. The convergence history of the HPO using BO for the 52-bar dome truss structure.

161001 15000 | | | ]
---------- FEA-DE
14100 } - i :
10000 [ DNN-DE |
.\ Present
12100 } L 1
8000 Hre—————, .
~ --—- "."
%,0 10100 | RS - - - ‘2--5"5"5---.-.“‘ )
5, 6000 Lrerrenmeeenene |
k) N
= 8100’f S= =
£ | 4000 | :
6100 'i/ K :
Y 2000 ‘ ' - - ‘
a100(f 0 50 100 150 200 250 300
T,
"'ﬂlu—._ . - | Iy
0 2500 5000 7500 10000 12500

Number of generations/epochs

Fig. 10. The weight convergence histories of the optimal network and other works for the 52-bar dome truss.

12



H.T. Mai et al. European Journal of Mechanics / A Solids 98 (2023) 104869

Table 10
Comparison of optimal results for the 52-bar dome truss.
Design variables Saka FEA-DE DNN-DE Present
A, (cm?) (Saka and Ulker, 1992) (Mai et al., (Mai et al.,
2021) 2021)
1 81.820 2.000 2.000 2.004
2 22.410 2.000 2.000 2.000
3 33.580 2.000 2.000 2.004 2 _
4 14.450 2.000 2.000 2.001 — A
5 10.640 16.672 16.753 16.692
6 25.160 17.585 17.869 17.544
7 2.000 2.519 2.301 2.509 g
8 2.000 2.000 2.000 2.008 o
Best weight (kg) 5,161 2,141.9 2,142.41 2,141.010 on
)
\O
Table 11
The displacement constraints of the 52-bar dome truss. 6 v
Displacements Saka FEA-DE DNN-DE Present — A
(mm) (Saka and Ulker, 1992) (Mai et al., 2021) (Mai et al., 2021)
\ -2.772 1.328 1.206 1.339 E
w, -2.826 0.720 0.742 0.743 o
W, 13.045 10.000 10.000 10.000 2 O
\ 9.491 10.000 9.648 9.987 g
\O
Table 12
Comparison of optimal results for the 56-bar space truss. 1 O v
Design variables Saka (Saka and Ulker, 1992) FEA-DE Present A
A; (cm?)
1 7.440 8.002 7.951 E
2 111.020 115.427 115.609 S)
3 5.000 5.001 5.005 O
4 46.460 52.761 52.642 o
Best weight (kg) 13,577.160 14,550.004 14,549.691 %
Table 13 1 4 v
The displacement constraints of the 56-bar space truss. — A
Displacements (mm) Saka (Saka and Ulker, 1992) FEA-DE Present
u, 31.1542 29.0021 28.9957 E
u, 32.2244 30.0002 30.0000 o
U, 27.0624 25.3639 25.3520 \O
u, 26.7943 25.1181 25.1044 D
us 24.3559 22.5559 22.5625 %
u, 23.2623 21.5386 21.5389
uy 19.9771 18.5977 18.5931
ug 20.2158 18.8190 18.8160 1 8 v
U, 14.6074 13.4029 13.4083 X ———
g 14.8078 13.5845 13.5914 |
Uy 13.9259 12.8816 12.8889 45’7 20m
Uy 12.7964 11.8268 11.8277
U3 7.7910 7.1061 7.1175
Uy 6.6797 6.0706 6.0757
Uss 5.4646 4.9662 4.9702
6 5.6804 5.1646 5.1701 Fig. 11. A 56-bar space truss structure.
Table 14
Comparison of optimal results of the 120 dome truss.
Design variables Saka (Saka and Ulker, 1992) FEA-DE Present
A; (cm?) Table 15
1 17.500 9.693 5.496 The displacement constraints of the 120-bar dome truss.
2 45.560 45.096 42.184 Displacements (mm) Saka (Saka and Ulker, 1992) FEA-DE Present
3 25.450 25.785 25.077 w, 7518 —8.336 —10.000
4 8.440 4.829 2.077
Ws -10.015 —9.838 -10.000
5 22.300 24.116 24.805 w 0.907 0.641 0.606
6 15.960 14.997 15.454 1 0125 _4401  —5.766
7 3.900 2.000 2.048 Wao : : :
Best weight (kg) 7,587.000 6,504.674 5,836.717

13
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Fig. 13. The weight convergence histories of the optimal network and FEA-DE for the 56-bar space truss.

5. Conclusions

In this study, an efficient self-tuning hyperparameter DNN-based
framework is developed to solve the design optimization of truss struc-
tures with geometrically nonlinear behavior. The DNN is built to pa-
rameterize the cross-sectional area of members. In addition, the BO
framework is integrated with the network’s training process to self-
adjusting search hyperparameters. And instead of looking for the cross-
sectional areas, the parameters of the network as the new design

14

variables for structural optimization are estimated by training to min-
imize the loss function. Therein, the FEA is utilized to support the
construction of the loss function and the network directly performs
the structural optimization problem. When the training phase ends, the
minimum weight of the structure is pointed out immediately. And then,
BO is utilized to determine the best optimum weight corresponding the
optimal hyperparameters of the network. Several numerical examples
for the optimum design of geometrically nonlinear truss structure are
examined to prove the reliability and efficiency of our approach. And
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the numerical results indicated that our model always outperforms oth-
ers in terms of the quality solution and convergence rate. In specific, it
is interesting that the network can automatically tune hyperparameters
in the learning process to avoid being trapped in a local optimum,
and one of the major strengths of this approach. In light of the above
outstanding features, it is a promising alternative to solving complex
problems with nonlinear behavior.

CRediT authorship contribution statement

Hau T. Mai: Conceptualization, Methodology, Software, Formal
analysis, Investigation, Writing — original draft, Writing — review &
editing, Visualization. Seunghye Lee: Writing — review, Validation.
Donghyun Kim: Data curation, Validation. Jaewook Lee: Data cura-
tion, Validation. Joowon Kang: Data curation, Validation. Jaehong
Lee: Conceptualization, Methodology, Supervision, Funding acquisi-
tion.

15

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgment

This research was supported by a grant (NRF- 2020R1A4A2002855)
from NRF (National Research Foundation of Korea) funded by MEST
(Ministry of Education and Science Technology) of Korean government.



H.T. Mai et al.

European Journal of Mechanics / A Solids 98 (2023) 104869

7800 T T

7600

7400

7200 [

Weight (kg)
[o] ()] ~
()] @ o
o o o
o o o

6400 [

6200

6000 [

5800

5 10 15 20 25
Number of calls n
Fig. 15. The convergence histories of the HPO using BO for the 120-bar dome truss structure.
x10*
1'78 4 T T T T T ]
] 18 % 10 — . . .
' ' - = =FEA-DE
1.58 Loy \ Present |7 -
A
1.4 P ]
138 i
o . 1.2 :
=) )
118} - 1 1 -
15) 1
= I
0.98 '-I 0.8F ]
' 1
iy |
1 N ) ) ) )
0.78 | 0 50 100 150 200 2507
0'58 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

Number of generations/epochs

Fig. 16. The weight convergence histories of the optimal network and FEA-DE for the 120-bar dome truss.

References

Abueidda, D.W., Koric, S., Sobh, N.A., 2020. Topology optimization of 2D structures
with nonlinearities using deep learning. Comput. Struct. 237, 106283.

Afshari, S.S., Enayatollahi, F., Xu, X., Liang, X., 2022. Machine learning-based methods
in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 219, 108223.

Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T., 2019. Artificial neural network
methods for the solution of second order boundary value problems. Comput. Mater.
Contin. 59 (1), 345-359.

Asali, A., Ravid, D., Shalev, H., David, L., Yogev, E., Yogev, S.S., Schonman, R.,
Biron-Shental, T., Miller, N., 2021. Intrahepatic cholestasis of pregnancy: Machine-
learning algorithm to predict elevated bile acid based on clinical and laboratory
data. Arch. Gynecol. Obstet. 304 (3), 641-647.

16

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Wanderman-Milne, S., 2020. JAX: composable transformations of Python+ NumPy
programs, 2018, 4. p. 16, URL http://github.com/google/jax.

Chandrasekhar, A., Sridhara, S., Suresh, K., 2021. AuTO: A framework for auto-
matic differentiation in Topology Optimization. Struct. Multidiscip. Optim. 64 (6),
4355-4365.

Chandrasekhar, A., Suresh, K., 2021. TOuNN: Topology Optimization using Neural
Networks. Struct. Multidiscip. Optim. 63 (3), 1135-1149.

Coda, H.B., Paccola, R.R., 2014. A total-Lagrangian position-based FEM applied to
physical and geometrical nonlinear dynamics of plane frames including semi-rigid
connections and progressive collapse. Finite Elem. Anal. Des. 91, 1-15.

De Borst, R., Crisfield, M.A., Remmers, J.J., Verhoosel, C.V., 2012. Nonlinear Finite
Element Analysis of Solids and Structures. John Wiley & Sons.

El-Sayed, M.E., Ridgely, B.J., Sandgren, E., 1989. Nonlinear structural optimization
using goal programming. Comput. Struct. 32 (1), 69-73.


http://refhub.elsevier.com/S0997-7538(22)00299-6/sb1
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb1
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb1
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb2
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb2
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb2
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb3
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb3
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb3
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb3
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb3
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb4
http://github.com/google/jax
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb6
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb6
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb6
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb6
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb6
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb7
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb7
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb7
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb8
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb8
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb8
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb8
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb8
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb9
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb9
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb9
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb10
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb10
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb10

H.T. Mai et al.

Hajela, P., Berke, L., 1991a. Neural network based decomposition in optimal structural
synthesis. Comput. Syst. Eng. 2 (5-6), 473-481.

Hajela, P., Berke, L., 1991b. Neurobiological computational models in structural
analysis and design. Comput. Struct. 41 (4), 657-667.

Hasangebi, O., 2008. Adaptive evolution strategies in structural optimization: Enhanc-
ing their computational performance with applications to large-scale structures.
Comput. Struct. 86 (1-2), 119-132.

Hertel, L., Collado, J., Sadowski, P., Ott, J., Baldi, P., 2020. Sherpa: Robust
hyperparameter optimization for machine learning. SoftwareX 12, 100591.

Hoyer, S., Sohl-Dickstein, J., Greydanus, S., 2019. Neural reparameterization improves
structural optimization. arXiv preprint arXiv:1909.04240.

Hrinda, G.A., Nguyen, D.T., 2008. Optimization of stability-constrained geometrically
nonlinear shallow trusses using an arc length sparse method with a strain energy
density approach. Finite Elem. Anal. Des. 44 (15), 933-950.

Jia, D.-W., Wu, Z.-Y., 2022. A Laplace asymptotic integral-based reliability analysis
method combined with artificial neural network. Appl. Math. Model..

Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive
black-box functions. J. Global Optim. 13 (4), 455-492.

Kadapa, C., 2021. A simple extrapolated predictor for overcoming the starting and
tracking issues in the arc-length method for nonlinear structural mechanics. Eng.
Struct. 234, 111755.

Kameshki, E., Saka, M., 2001. Optimum design of nonlinear steel frames with semi-rigid
connections using a genetic algorithm. Comput. Struct. 79 (17), 1593-1604.
Kameshki, E., Saka, M., 2007. Optimum geometry design of nonlinear braced domes

using genetic algorithm. Comput. Struct. 85 (1-2), 71-79.

Kaveh, A., Rahami, H., 2006. Nonlinear analysis and optimal design of structures via
force method and genetic algorithm. Comput. Struct. 84 (12), 770-778.

Khot, N., 1983. Nonlinear analysis of optimized structure with constraints on
systemstability. AIAA J. 21 (8), 1181-1186.

Khot, N., Kamat, M., 1985. Minimum weight design of truss structures with geometric
nonlinear behavior. AIAA J. 23 (1), 139-144.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Korenciak, M., 2018. Go Game Move Prediction Using Convolutional Neural Network.
Jyviaskyldn ammattikorkeakoulu.

Lee, S., Kim, H., Lieu, Q.X., Lee, J., 2020. CNN-based image recognition for topology
optimization. Knowl.-Based Syst. 198, 105887.

Lee, S., Park, S., Kim, T., Lieu, Q.X., Lee, J., 2021a. Damage quantification in truss
structures by limited sensor-based surrogate model. Appl. Acoust. 172, 107547.
Lee, S., Vo, T.P., Thai, H.-T., Lee, J., Patel, V., 2021b. Strength prediction of concrete-
filled steel tubular columns using Categorical Gradient Boosting algorithm. Eng.

Struct. 238, 112109.

Li, W., Bazant, M.Z., Zhu, J., 2021. A physics-guided neural network framework
for elastic plates: Comparison of governing equations-based and energy-based
approaches. Comput. Methods Appl. Mech. Engrg. 383, 113933.

Li, B., Huang, C., Li, X., Zheng, S., Hong, J., 2019. Non-iterative structural topology
optimization using deep learning. Comput. Aided Des. 115, 172-180.

Lieu, Q.X., Nguyen, K.T., Dang, K.D., Lee, S., Kang, J., Lee, J., 2022. An adaptive
surrogate model to structural reliability analysis using deep neural network. Expert
Syst. Appl. 189, 116104.

17

European Journal of Mechanics / A Solids 98 (2023) 104869

Mai, H.T., Kang, J., Lee, J., 2021. A machine learning-based surrogate model for
optimization of truss structures with geometrically nonlinear behavior. Finite Elem.
Anal. Des. 196, 103572.

Mai, H.T., Lieu, Q.X., Kang, J., Lee, J., 2022a. A novel deep unsupervised learning-based
framework for optimization of truss structures. Eng. Comput. 1-24.

Mai, H.T., Lieu, Q.X., Kang, J., Lee, J., 2022c. A robust unsupervised neural network
framework for geometrically nonlinear analysis of inelastic truss structures. Appl.
Math. Model..

Missoum, S., Giirdal, Z., Gu, W., 2002. Optimization of nonlinear trusses using a
displacement-based approach. Struct. Multidiscip. Optim. 23 (3), 214-221.

Nguyen-Thanh, V.M., Zhuang, X., Rabczuk, T., 2020. A deep energy method for finite
deformation hyperelasticity. Eur. J. Mech. A Solids 80, 103874.

Pezeshk, S., Camp, C., Chen, D., 2000. Design of nonlinear framed structures using
genetic optimization. J. Struct. Eng. 126 (3), 382-388.

Ramasamy, J., Rajasekaran, S., 1996. Artificial neural network and genetic algorithm
for the design optimizaton of industrial roofs—A comparison. Comput. Struct. 58
(4), 747-755.

Riks, E., 1979. An incremental approach to the solution of snapping and buckling
problems. Int. J. Solids Struct. 15 (7), 529-551.

Saka, M., Ulker, M., 1992. Optimum design of geometrically nonlinear space trusses.
Comput. Struct. 42 (3), 289-299.

Sonmez, M., 2011. Artificial Bee Colony algorithm for optimization of truss structures.
Appl. Soft Comput. 11 (2), 2406-2418.

Srinivasan, S., Saghir, M.Z., 2013. Modeling of thermotransport phenomenon in metal
alloys using artificial neural networks. Appl. Math. Model. 37 (5), 2850-2869.
Thai, H.-T., Nguyen, T.-K., Lee, S., Patel, V.I., Vo, T.P., 2020. Review of nonlinear
analysis and modeling of steel and composite structures. Int. J. Struct. Stab. Dyn.

20 (04), 2030003.

Trinh, D.T., Lee, S., Kang, J., Lee, J., 2022. Force density-informed neural network
for prestress design of tensegrity structures with multiple self-stress modes. Eur. J.
Mech. A Solids 104584.

Truong, T.T., Dinh-Cong, D., Lee, J., Nguyen-Thoi, T., 2020a. An effective Deep
Feedforward Neural Networks (DFNN) method for damage identification of truss
structures using noisy incomplete modal data. J. Build. Eng. 30, 101244.

Truong, T.T., Lee, S., Lee, J., 2020b. An artificial neural network-differential evolution
approach for optimization of bidirectional functionally graded beams. Compos.
Struct. 233, 111517.

Truong, T.T., Lee, J., Nguyen-Thoi, T., 2022. Joint damage detection of struc-
tures with noisy data by an effective deep learning framework using
autoencoder-convolutional gated recurrent unit. Ocean Eng. 243, 110142.

Vo, T.P., Lee, J., 2011. Geometrical nonlinear analysis of thin-walled composite beams
using finite element method based on first order shear deformation theory. Arch.
Appl. Mech. 81 (4), 419-435.

Wempner, G.A., 1971. Discrete approximations related to nonlinear theories of solids.
Int. J. Solids Struct. 7 (11), 1581-1599.

Zehnder, J., Li, Y., Coros, S., Thomaszewski, B., 2021. NTopo: Mesh-free topology
optimization using implicit neural representations. Adv. Neural Inf. Process. Syst.
34.


http://refhub.elsevier.com/S0997-7538(22)00299-6/sb11
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb11
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb11
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb12
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb12
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb12
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb13
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb13
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb13
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb13
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb13
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb14
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb14
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb14
http://arxiv.org/abs/1909.04240
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb16
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb16
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb16
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb16
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb16
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb17
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb17
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb17
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb18
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb18
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb18
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb19
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb19
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb19
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb19
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb19
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb20
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb20
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb20
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb21
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb21
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb21
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb22
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb22
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb22
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb23
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb23
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb23
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb24
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb24
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb24
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb26
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb26
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb26
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb27
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb27
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb27
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb28
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb28
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb28
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb29
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb29
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb29
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb29
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb29
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb30
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb30
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb30
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb30
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb30
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb31
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb31
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb31
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb32
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb32
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb32
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb32
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb32
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb33
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb33
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb33
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb33
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb33
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb34
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb34
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb34
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb35
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb35
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb35
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb35
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb35
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb36
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb36
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb36
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb37
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb37
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb37
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb38
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb38
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb38
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb39
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb39
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb39
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb39
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb39
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb40
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb40
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb40
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb41
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb41
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb41
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb42
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb42
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb42
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb43
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb43
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb43
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb44
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb44
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb44
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb44
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb44
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb45
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb45
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb45
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb45
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb45
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb46
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb46
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb46
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb46
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb46
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb47
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb47
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb47
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb47
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb47
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb48
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb48
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb48
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb48
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb48
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb49
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb49
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb49
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb49
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb49
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb50
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb50
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb50
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb51
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb51
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb51
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb51
http://refhub.elsevier.com/S0997-7538(22)00299-6/sb51

	Optimum design of nonlinear structures via deep neural network-based parameterization framework
	Introduction
	Statement of structural optimization problem
	Deep neural network-based parameterization framework
	Deep Neural network
	Loss function
	Hyperparameter tuning

	Numerical examples
	25-bar space truss
	52-bar dome truss
	56-bar space truss
	120-bar dome truss

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


